Autapomorphy

Phylogenies showing the terminology used to describe different patterns of ancestral and derived character or trait states.[1]

In phylogenetics, an autapomorphy is a distinctive feature, known as a derived trait, that is unique to a given taxon. That is, it is found only in one taxon, but not found in any others or outgroup taxa, not even those most closely related to the focal taxon (which may be a species, family or in general any clade.[2] It can therefore be considered an apomorphy in relation to a single taxon.[3] The word autapomorphy, first introduced in 1950 by German entomologist Willi Hennig, is derived from the Greek words αὐτός, aut- = "self"; ἀπό, apo = "away from"; and μορφή, morphḗ = "shape".

Discussion

Because autapomorphies are only present in a single taxon, they do not convey information about relationship. Therefore, autapomorphies are not useful to infer phylogenetic relationships. However, autapomorphy, like synapomorph and plesiomorphy is a relative concept depending on the taxon in question. An autapomorphy at a given level may well be a synapomorphy at a less-inclusive level.[4] An example of an autapomorphy can be described in modern snakes. Snakes have lost the two pairs of legs that characterize all of Tetrapoda, and the closest taxa to Ophidia - as well as their common ancestors - all have two pairs of legs. Therefore, the Ophidia taxon presents an autapomorphy with respect to its absence of legs.[3]

The autapomorphic species concept is one of many methods that scientists might use to define and distinguish species from one another. This definition assigns species on the basis of amount of divergence associated with reproductive incompatibility, which is measured essentially by number of autapomorphies.[5] This grouping method is often referred to as the "monophyletic species concept" or the "phylospecies" concept and was popularized by D.E. Rosen in 1979. Within this definition, a species is seen as "the least inclusive monophyletic group definable by at least one autapomorphy".[6] While this model of speciation is useful in that it avoids non-monophyletic groupings, it has its criticisms as well. N.I. Platnick, for example, believes the autapomorphic species concept to be inadequate because it allows for the possibility of reproductive isolation and speciation while revoking the "species" status of the mother population. In other words, if a peripheral population breaks away and becomes reproductively isolated, it would conceivably need to develop at least one autapomorphy to be recognized as a different species. If this can happen without the larger mother population also developing a new autapomorphy, then the mother population cannot remain a species under the autapomorphic species concept: it would no longer have any apomorphies not also shared by the daughter species.[7]

See also

References

  1. Roderick D.M. Page; Edward C. Holmes (14 July 2009). Molecular Evolution: A Phylogenetic Approach. John Wiley & Sons. ISBN 978-1-4443-1336-9.
  2. Futuyma, Douglas J. Evolutionary Biology. Sinauer Associaties, Inc., 3rd edition. 1998. Page 95.
  3. 1 2 Appel, Ron D.; Feytmans, Ernest. Bioinformatics: a Swiss Perspective. "Chapter 3: Introduction of Phylogenetics and its Molecular Aspects." World Scientific Publishing Company, 1st edition. 2009.
  4. Forey, Peter L. History of the Coelacanth Fishes. Sprinter, 1st edition. 1997.
  5. Howard, Daniel J.; Berlocher, Stewart H. Endless Forms: Species and Speciation. Oxford University Press, USA; 1st edition. 1998.
  6. Bull, Alan T. Microbial Diversity and Bioprospecting. ASM Press, 2004.
  7. Platnick, N.I. (2001). "From Cladograms to Classifications: The Road to DePhylocode." (PDF). The Systematics Association.
This article is issued from Wikipedia - version of the 11/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.