Cartogram

Kartenanamorphote (not Kartogramm) of Germany, with the states and districts resized according to population.

A cartogram is a map in which some thematic mapping variable – such as travel time, population, or Gross National Product – is substituted for land area or distance. The geometry or space of the map is distorted in order to convey the information of this alternate variable. They are primarily used to display emphasis and for analysis as nomographs.[1]

Two common types of cartograms: area and distance cartograms. Cartograms have a fairly long history, with examples from the mid-1800s.[2]

Area cartograms

Area cartogram of the United States, with each county rescaled in proportion to its population. Colors refer to the results of the 2004 U.S. presidential election popular vote.

An area cartogram is sometimes referred to as a value-by-area map or an isodemographic map, the latter particularly for a population cartogram, which illustrates the relative sizes of the populations of the countries of the world by scaling the area of each country in proportion to its population; the shape and relative location of each country is retained to as large an extent as possible, but inevitably a large amount of distortion results. Other synonyms in use are anamorphic map, density-equalizing map and Gastner map.[3][4][5]

Area cartograms may be contiguous or noncontiguous. The area cartograms shown on this page are all contiguous, while a good example of a noncontiguous cartogram was published in The New York Times.[6][7] The online resource SHOW®, provided by Mapping Worlds, creates discontiguous cartograms for different geographies (United States, Japan and World at this time) interactively, allowing users to quickly compare various characteristics. This method of cartogram creation is sometimes referred to as the projector method or scaled-down regions.

Cartograms may be classified also by the properties of shape and topology preservation. Classical area cartograms (shown on this page) are typically distorting the shape of spatial units to some degree, but they are strict at preserving correct neighborhood relationships between them. Scaled-down cartograms (from the NY Times example) are strictly shape-preserving. Another branch of cartograms introduced by Dorling, replaces actual shapes with circles scaled according to the mapped feature. Circles are distributed to resemble the original topology. Demers cartogram is a variation of Dorling cartogram, but it uses rectangles instead of circles, and attempts to retain visual cues at the expense of minimum distance. Schematic maps based on quad trees can be seen as non shape-preserving cartograms with some degree of neighborhood preservation.

A collection of about 700 contiguous area cartograms is available at Worldmapper,[8] a collaborative team of researchers at the Universities of Sheffield and Michigan.

Production

Cartogram showing Open Europe estimate of total European Union net budget expenditure in euros for the whole period 2007-2013, per capita, based on Eurostat 2007 pop. estimates (Luxembourg not shown).
Net contributors
  -5000 to -1000 euro per capita
  -1000 to -500 euro per capita
  -500 to 0 euro per capita
Net recipients
  0 to 500 euro per capita
  500 to 1000 euro per capita
  1000 to 5000 euro per capita
  5000 to 10000 euro per capita
  10000 euro plus per capita

One of the first cartographers to generate cartograms with the aid of computer visualization was Waldo Tobler of UC Santa Barbara in the 1960s. Prior to Tobler's work, cartograms were created by hand (as they occasionally still are). The National Center for Geographic Information and Analysis located on the UCSB campus maintains an online Cartogram Central with resources regarding cartograms.

A number of software packages generate cartograms. Most of the available cartogram generation tools work in conjunction with other GIS software tools as add-ons or independently produce cartographic outputs from GIS data formatted to work with commonly used GIS products. Examples of cartogram software include ScapeToad,[9][10] Cart,[11] and the Cartogram Processing Tool (an ArcScript for ESRI's ArcGIS), which all use the Gastner-Newman algorithm.[12][13] An alternative algorithm, Carto3F,[14] is also implemented as an independent program for non-commercial use on Windows platforms.[15] This program also provides an optimization to the original Dougenik rubber-sheet algorithm.[16] [17]

Algorithms

Year Author Algorithm Type Shape preservation Topology preservation
1973ToblerRubber map method area contiguouswith distortion Yes, but not guaranteed
1976OlsonProjector method area noncontiguousyes No
1978Kadmon, ShlomiPolyfocal projection distance radial Unknown Unknown
1984Selvin et al.DEMP (Radial Expansion) methodarea contiguouswith distortion Unknown
1985Dougenik et al.Rubber Sheet Distortion method [17]area contiguouswith distortion Yes, but not guaranteed
1986ToblerPseudo-Cartogram methodarea contiguouswith distortion Yes
1987SnyderMagnifying glass azimuthal map projections distance radial Unknown Unknown
1989Cauvin et al.Piezopleth mapsarea contiguouswith distortion Unknown
1990TorgusonInteractive polygon zipping methodarea contiguouswith distortion Unknown
1990Danny DorlingCellular Automata Machine methodarea contiguouswith distortionYes
1993Gusein-Zade, TikunovLine Integral methodarea contiguouswith distortion Yes
1996DorlingCircular cartogramarea noncontiguousno (circles) No
1997Sarkar, BrownGraphical fisheye views distance radial Unknown Unknown
1997Edelsbrunner, WaupotitschCombinatorial-based approacharea contiguouswith distortion Unknown
1998Kocmoud, HouseConstraint-based approacharea contiguouswith distortion Yes
2003Keim, North, PanseCartodrawarea contiguouswith distortion Yes
2003Keim, North, PanseHistoScalearea contiguouswith distortion Yes
2004Gastner, NewmanDiffusion-based method [3]area contiguouswith distortion Yes, algorithmically guaranteed
2004SlugaLastna tehnika za izdelavo anamorfozarea contiguouswith distortion Unknown
2004Helimann, Keim et al.RecMaparea contiguousno (rectangles) No
2005Keim, North, PanseMedial-axis-based cartogramsarea contiguouswith distortion Yes
2007van Kreveld, SpeckmannRectangular Cartogramarea contiguousno (rectangles) No
2009Heriques, Bação, LoboCarto-SOMarea contiguouswith distortion Yes
2013Shipeng Sun Opti-DCN [16] and Carto3F [14]area contiguouswith distortion Yes, algorithmically guaranteed
2014B. S. Daya SagarMathematical Morphology-Based Cartogramsarea contiguouswith local distortion, but no global distortion No

See also

References

  1. Tobler, Waldo (March 2004). "Thirty-Five Years of Computer Cartograms". Annals of the Association of American Geographers. 94 (1): 58–73. doi:10.1111/j.1467-8306.2004.09401004.x. JSTOR 3694068.
  2. Johnson (2008-12-08). "Early cartograms". indiemaps.com/blog. Retrieved 2012-08-17.
  3. 1 2 Michael T. Gastner; Mark E. J. Newman (2004). "Diffusion-based method for producing density equalizing maps". Proceedings of the National Academy of Sciences. 101 (20): 7499–7504. arXiv:physics/0401102Freely accessible. Bibcode:2004PNAS..101.7499G. doi:10.1073/pnas.0400280101. PMC 419634Freely accessible. PMID 15136719.
  4. Gallery of Data Visualization - Bright Ideas
  5. UNEP GRID Ardenal: Anamorphic Maps
  6. Johnson (2011-02-22). "Noncontiguous cartograms in OpenLayers and Polymaps". indiemaps.com/blog. Retrieved 2012-08-17.
  7. Cowan, Sarah; Doyle, Stephen; Heffron, Drew (2008-11-02), "Op-Chart: How Much Is Your Vote Worth?", New York Times, retrieved 2012-08-17
  8. Worldmapper:The world as you've never seen it before
  9. ScapeToad
  10. The Art of Software: Cartogram Crash Course
  11. Cart: Computer software for making cartograms
  12. Cartogram Geoprocessing Tool
  13. Hennig, Benjamin D.; Pritchard, John; Ramsden, Mark; Dorling, Danny, "Remapping the World's Population: Visualizing data using cartograms", ArcUser (Winter 2010): 66–69
  14. 1 2 Sun, Shipeng (2013), "A Fast, Free-Form Rubber-Sheet Algorithm for Contiguous Area Cartograms", International Journal of Geographic Information Science, 27 (3): 567–93, doi:10.1080/13658816.2012.709247
  15. Personal Website of Shipeng Sun
  16. 1 2 Sun, Shipeng (2013), "An Optimized Rubber-Sheet Algorithm for Continuous Area Cartograms", The Professional Geographer, 16 (1): 16–30, doi:10.1080/00330124.2011.639613
  17. 1 2 Dougenik, James A.; Chrisman, Nicholas R.; Niemeyer, Duane R. (1985), "An Algorithm to Construct Continuous Area Cartograms", The Professional Geographer, 37 (1): 75–81, doi:10.1080/00330124.2011.639613

Further reading

Wikimedia Commons has media related to Cartograms.
This article is issued from Wikipedia - version of the 11/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.