Constructive function theory
In mathematical analysis, constructive function theory is a field which studies the connection between the smoothness of a function and its degree of approximation.[1][2] It is closely related to approximation theory. The term was coined by Sergei Bernstein.
Example
Let f be a 2π-periodic function. Then f is α-Hölder for some 0 < α < 1 if and only if for every natural n there exists a trigonometric polynomial Pn of degree n such that
where C(f) is a positive number depending on f. The "only if" is due to Dunham Jackson, see Jackson's inequality; the "if" part is due to Sergei Bernstein, see Bernstein's theorem (approximation theory).
Notes
- ↑ "Constructive Theory of Functions".
- ↑ Telyakovskii, S.A. (2001), "Constructive theory of functions", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
References
- Achiezer, N. I. (1956). Theory of approximation. Translated by Charles J. Hyman. New York: Frederick Ungar Publishing.
- Natanson, I. P. (1964). Constructive function theory. Vol. I. Uniform approximation. New York: Frederick Ungar Publishing Co. MR 0196340.
- Natanson, I. P. (1965). Constructive function theory. Vol. II. Approximation in mean. New York: Frederick Ungar Publishing Co. MR 0196341.
- Natanson, I. P. (1965). Constructive function theory. Vol. III. Interpolation and approximation quadratures. New York: Ungar Publishing Co. MR 0196342.
This article is issued from Wikipedia - version of the 6/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.