Cotton–Mouton effect

In physical optics, the Cotton–Mouton effect refers to birefringence in a liquid in the presence of a constant transverse magnetic field. It is a similar but stronger effect than the Voigt effect (in which the medium is a gas instead of a liquid). The electric analog is the Kerr effect.

It was discovered in 1907 by Aimé Cotton and Henri Mouton, working in collaboration.

When a linearly polarized wave propagates perpendicular to magnetic field (e.g. in a magnetized plasma), it can become elliptized. Because a linearly polarized wave is some combination of in-phase X & O modes, and because X & O waves propagate with different phase velocities, this causes elliptization of the emerging beam. As the waves propagate, the phase difference (δ) between EX & EO increases.[1]

See also

References

  1. Eric W. Weisstein. "Cotton-Mouton Effect -- from Eric Weisstein's World of Physics". Wolfram Research, Inc. Retrieved 25 October 2016.
This article is issued from Wikipedia - version of the 10/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.