Glycoside hydrolase family 89

Alpha-N-acetylglucosaminidase (NAGLU) tim-barrel domain
Identifiers
Symbol NAGLU
Pfam PF05089
Pfam clan CL0058
InterPro IPR007781
CAZy GH89
Alpha-N-acetylglucosaminidase (NAGLU) N-terminal domain
Identifiers
Symbol NAGLU_N
Pfam PF12971
CAZy GH89
Alpha-N-acetylglucosaminidase (NAGLU) C-terminal domain
Identifiers
Symbol NAGLU_C
Pfam PF12972
CAZy GH89

In molecular biology, glycoside hydrolase family 89 is a family of glycoside hydrolases.

Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy(http://www.cazy.org/GH1.html) web site,[4] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.[5]

Glycoside hydrolase family 89 CAZY GH_89 includes enzymes with α-N-acetylglucosaminidase EC 3.2.1.50 activity. The enzyme consist of three structural domains, the N-terminal domain has an alpha-beta fold, the central domain has a TIM barrel fold, and the C-terminal domain has an all alpha helical fold.[6]

Alpha-N-acetylglucosaminidase is a lysosomal enzyme required for the stepwise degradation of heparan sulphate.[7] Mutations on the alpha-N-acetylglucosaminidase (NAGLU) gene can lead to Mucopolysaccharidosis type IIIB (MPS IIIB; or Sanfilippo syndrome type B) characterised by neurological dysfunction but relatively mild somatic manifestations.[8]

References

  1. Henrissat B, Callebaut I, Mornon JP, Fabrega S, Lehn P, Davies G (1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proc. Natl. Acad. Sci. U.S.A. 92 (15): 7090–7094. doi:10.1073/pnas.92.15.7090. PMC 41477Freely accessible. PMID 7624375.
  2. Henrissat B, Davies G (1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–859. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
  3. Bairoch, A. "Classification of glycosyl hydrolase families and index of glycosyl hydrolase entries in SWISS-PROT". 1999.
  4. Henrissat, B. and Coutinho P.M. "Carbohydrate-Active Enzymes server". 1999.
  5. CAZypedia, an online encyclopedia of carbohydrate-active enzymes.
  6. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, Boraston AB (2008). "Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB.". Proc Natl Acad Sci U S A. 105 (18): 6560–5. doi:10.1073/pnas.0711491105. PMC 2373330Freely accessible. PMID 18443291.
  7. Li HH, Yu WH, Rozengurt N, Zhao HZ, Lyons KM, Anagnostaras S, Fanselow MS, Suzuki K, Vanier MT, Neufeld EF (December 1999). "Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase". Proc. Natl. Acad. Sci. U.S.A. 96 (25): 14505–10. doi:10.1073/pnas.96.25.14505. PMC 24466Freely accessible. PMID 10588735.
  8. Villani GR, Follenzi A, Vanacore B, Di Domenico C, Naldini L, Di Natale P (June 2002). "Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer". Biochem. J. 364 (Pt 3): 747–53. doi:10.1042/BJ20011872. PMC 1222624Freely accessible. PMID 12049639.

This article incorporates text from the public domain Pfam and InterPro IPR007781

This article is issued from Wikipedia - version of the 5/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.