Isambard Kingdom Brunel

"Brunel" redirects here. For other uses, see Brunel (disambiguation).
Isambard Kingdom Brunel
FRS

A 19th century man wearing a jacket, trousers and waistcoat, with his hands in his pockets and a cigar in mouth, wearing a tall stovepipe top hat, standing in front of giant iron chains on a drum.

Isambard Kingdom Brunel by the launching chains of the SS Great Eastern
by Robert Howlett, 1857
Born (1806-04-09)9 April 1806
Portsmouth, England
Died 15 September 1859(1859-09-15) (aged 53)
Westminster, London, England
Nationality British
Education
Spouse(s) Mary Elizabeth Horsley
Children
Parent(s)

Engineering career

Discipline
Institutions Institution of Civil Engineers
Projects
Signature

Isambard Kingdom Brunel FRS (/ˈɪzəmˌbɑːd brˈnɛl/; 9 April 1806 – 15 September 1859), was a British mechanical and civil engineer who is considered "one of the most ingenious and prolific figures in engineering history",[1] "one of the 19th century engineering giants",[2] and "one of the greatest figures of the Industrial Revolution, [who] changed the face of the English landscape with his groundbreaking designs and ingenious constructions".[3] Brunel built dockyards, the Great Western Railway, a series of steamships including the first propeller-driven transatlantic steamship and numerous important bridges and tunnels. His designs revolutionised public transport and modern engineering.

Though Brunel's projects were not always successful, they often contained innovative solutions to long-standing engineering problems. During his career, Brunel achieved many engineering "firsts", including assisting in the building of the first tunnel under a navigable river and development of SS Great Britain, the first propeller-driven ocean-going iron ship, which was at the time (1843) also the largest ship ever built.[4][5]

Brunel set the standard for a well-built railway, using careful surveys to minimise grades and curves. This necessitated expensive construction techniques and new bridges and viaducts, and the two-mile-long Box Tunnel. One controversial feature was the wide gauge, a "broad gauge" of 7 ft 14 in (2,140 mm), instead of what was later to be known as 'standard gauge' of 4 ft 8 12 in (1,435 mm).

Brunel astonished Britain by proposing to extend the Great Western Railway westward to North America by building steam-powered iron-hulled ships. He designed and built three ships that revolutionised naval engineering.

In 2002, Brunel was placed second in a BBC public poll to determine the "100 Greatest Britons". In 2006, the bicentenary of his birth, a major programme of events celebrated his life and work under the name Brunel 200.[6]

Name

Brunel's name is an amalgamation of his parents' names. He inherited the family name of his father, and his middle name is his mother's surname. Brunel's first name, Isambard, comes from his father's middle name, which was also his father's preferred given name. "Isambard" is a Norman name of Germanic origin, meaning "iron-bright".[7] A cognate name is the German surname "Eisenbarth", which can still be found today among Bavarians and German-Americans.

Early life

The son of French civil engineer Sir Marc Isambard Brunel and Sophia Kingdom, Isambard Kingdom Brunel was born on 9 April 1806 in Britain Street, Portsea, Portsmouth, Hampshire,[8] where his father was working on block-making machinery.[9][10] He had two older sisters, Sophia (oldest child, Sophia[11]) and Emma, and the whole family moved to London in 1808 for his father's work. Brunel had a happy childhood, despite the family's constant money worries, with his father acting as his teacher during his early years. His father taught him drawing and observational techniques from the age of four and Brunel had learned Euclidean geometry by eight. During this time he also learned fluent French and the basic principles of engineering. He was encouraged to draw interesting buildings and identify any faults in their structure.[12][13]

When Brunel was eight he was sent to Dr Morrell's boarding school in Hove, where he learned the classics. His father, a Frenchman by birth, was determined that Brunel should have access to the high-quality education he had enjoyed in his youth in France; accordingly, at the age of 14, the younger Brunel was enrolled first at the University of Caen Normandy, then at Lycée Henri-IV in Paris.[12][14]

When Brunel was 15, his father Marc, who had accumulated debts of over £5,000, was sent to a debtors' prison. After three months went by with no prospect of release, Marc let it be known that he was considering an offer from the Tsar of Russia. In August 1821, facing the prospect of losing a prominent engineer, the government relented and issued Marc £5,000 to clear his debts in exchange for his promise to remain in Britain.[15][16]

When Brunel completed his studies at Henri-IV in 1822, his father had him presented as a candidate at the renowned engineering school École Polytechnique, but as a foreigner he was deemed ineligible for entry. Brunel subsequently studied under the prominent master clockmaker and horologist Abraham-Louis Breguet, who praised Brunel's potential in letters to his father.[12] In late 1822, having completed his apprenticeship, Brunel returned to England.[14]

Thames Tunnel

A narrow railway tunnel with a single railway track, lit by a bright white light
The Thames Tunnel in 2005.
Main article: Thames Tunnel

Brunel worked for several years as an assistant engineer on the project to create a tunnel under London's River Thames between Rotherhithe and Wapping, with tunnellers driving a horizontal shaft from one side of the river to the other under the most difficult and dangerous conditions. Brunel's father, Marc, was the chief engineer, and the project was funded by the Thames Tunnel Company.[17]

The composition of the riverbed at Rotherhithe was often little more than waterlogged sediment and loose gravel. An ingenious tunnelling shield designed by Marc Brunel helped protect workers from cave-ins,[18] but two incidents of severe flooding halted work for long periods, killing several workers and badly injuring the younger Brunel.[19] The latter incident, in 1828, killed the two most senior miners, and Brunel himself narrowly escaped death. He was seriously injured, and spent six months recuperating.[20] The event stopped work on the tunnel for several years.[21]

Though the Thames Tunnel was eventually completed during Marc Brunel's lifetime, his son had no further involvement with the tunnel proper, only using the abandoned works at Rotherhithe to further his abortive Gaz experiments. This was based on an idea of his father's, and was intended to develop into an engine that ran on power generated from alternately heating and cooling carbon dioxide made from ammonium carbonate and sulphuric acid. Despite interest from several parties (the Admiralty included) the experiments were judged by Brunel to be a failure on the grounds of fuel economy alone, and were discontinued after 1834.

In 1865 the East London Railway Company purchased the Thames Tunnel for £200,000, and four years later the first trains passed through it. Subsequently, the tunnel became part of the London Underground system, and remains in use today, originally as part of the East London Line now incorporated into the London Overground.[22]

Bridges

A suspension bridge spanning a river gorge with woodland in the background
The Clifton Suspension Bridge spans Avon Gorge, linking Clifton in Bristol to Leigh Woods in North Somerset.

Brunel is perhaps best remembered for designs for the Clifton Suspension Bridge in Bristol. The bridge was built to designs based on Brunel's, but with significant changes. Spanning over 702 ft (214 m), and nominally 249 ft (76 m) above the River Avon, it had the longest span of any bridge in the world at the time of construction.[23] Brunel submitted four designs to a committee headed by Thomas Telford, but Telford rejected all entries, proposing his own design instead. Vociferous opposition from the public forced the organising committee to hold a new competition, which was won by Brunel.[24]

Afterwards, Brunel wrote to his brother-in-law, the politician Benjamin Hawes: "Of all the wonderful feats I have performed, since I have been in this part of the world, I think yesterday I performed the most wonderful. I produced unanimity among 15 men who were all quarrelling about that most ticklish subject— taste".[25]

a red brick built bridge with shallow arches spanning a river, viewed from the front of a small boat
The Maidenhead Railway Bridge, at the time the largest span for a brick arch bridge.

Work on the Clifton bridge started in 1831, but was suspended due to the Queen Square riots caused by the arrival of Sir Charles Wetherell in Clifton. The riots drove away investors, leaving no money for the project, and construction ceased.[26][27]

Brunel did not live to see the bridge finished, although his colleagues and admirers at the Institution of Civil Engineers felt it would be a fitting memorial, and started to raise new funds and to amend the design. Work recommenced in 1862 and was completed in 1864, five years after Brunel's death.[25] In 2011 it was suggested, by historian and biographer Adrian Vaughan, that Brunel did not design the bridge, as eventually built, as the later changes to its design were substantial.[28] His views reflected a sentiment stated fifty two years earlier by Tom Rolt in his 1959 book Brunel. Re-engineering of suspension chains recovered from an earlier suspension bridge was one of many reasons given why Brunel's design could not be followed exactly.

In May 1845 Hungerford Bridge, a suspension footbridge across the Thames near Charing Cross Station in London, was opened. Its central span was 676.5 ft, and its cost was £106,000.[29] It was replaced by a new railway bridge in 1859, and the suspension chains were used to complete the Clifton Suspension Bridge.[24]

The Clifton Suspension Bridge still stands, and over 4 million vehicles traverse it every year.[30]

Brunel designed many bridges for his railway projects, including the Royal Albert Bridge spanning the River Tamar at Saltash near Plymouth, Somerset Bridge (an unusual laminated timber-framed bridge near Bridgwater[31]), the Windsor Railway Bridge, and the Maidenhead Railway Bridge over the Thames in Berkshire. This last was the flattest, widest brick arch bridge in the world and is still carrying main line trains to the west, even though today's trains are about ten times heavier than in Brunel's time.[32]

Throughout his railway building career, but particularly on the South Devon and Cornwall Railways where economy was needed and there were many valleys to cross, Brunel made extensive use of wood for the construction of substantial viaducts;[33] these have had to be replaced over the years as their primary material, Kyanised Baltic Pine, became uneconomical to obtain.

Brunel designed the Royal Albert Bridge in 1855 for the Cornwall Railway, after Parliament rejected his original plan for a train ferry across the Hamoaze—the estuary of the tidal Tamar, Tavy and Lynher. The bridge (of bowstring girder or tied arch construction) consists of two main spans of 455 ft (139 m), 100 ft (30 m) above mean high spring tide, plus 17 much shorter approach spans. Opened by Prince Albert on 2 May 1859, it was completed in the year of Brunel's death.[34]

Several of Brunel's bridges over the Great Western Railway might be demolished because the line is to be electrified, and there is inadequate clearance for overhead wires. Buckinghamshire County Council is negotiating to have further options pursued, in order that all nine of the remaining historic bridges on the line can be saved.[35][36]

Brunel's last major undertaking was the unique Three Bridges, London. Work began in 1856, and was completed in 1859.[37]

The three bridges in question are a clever arrangement allowing the routes of the Grand Junction Canal, Great Western and Brentford Railway, and Windmill Lane to cross each other.[38]

Great Western Railway

Track gauge
By transport mode
Tram · Rapid transit
Miniature · Scale model
By size (list)

Minimum
  Fifteen inch 381 mm (15 in)

Narrow
  600 mm,
Two foot
597 mm
600 mm
603 mm
610 mm
(1 ft 11 12 in)
(1 ft 11 58 in)
(1 ft 11 34 in)
(2 ft)
  750 mm,
Bosnian,
Two foot six inch,
800 mm
750 mm
760 mm
762 mm
800 mm
(2 ft 5 12 in)
(2 ft 5 1516 in)
(2 ft 6 in)
(2 ft 7 12 in)
  Swedish three foot,
900 mm,
Three foot
891 mm
900 mm
914 mm
(2 ft11 332 in)
(2 ft 11 716)
(3 ft)
  Metre 1,000 mm (3 ft 3 38 in)
  Three foot six inch,
Cape, CAP, Kyōki
1,067 mm (3 ft 6 in)
  Four foot six inch 1,372 mm (4 ft 6 in)

  Standard 1,435 mm (4 ft 8 12 in)

Broad
  Russian,
Five foot
1,520 mm
1,524 mm
(4 ft 11 2732 in)
(5 ft)
  Irish 1,600 mm (5 ft 3 in)
  Iberian 1,668 mm (5 ft 5 2132 in)
  Indian 1,676 mm (5 ft 6 in)
  Six foot 1,829 mm (6 ft)
  Brunel 2,140 mm (7 ft 14 in)
Change of gauge
Break-of-gauge · Dual gauge ·
Conversion (list) · Bogie exchange · Variable gauge
By location
North America · South America · Europe · Australia
The interior of a large railway station with a curved roof supported by iron girders, supported by iron columns, four diesel trains standing at platforms, passengers on the platforms, in the distance daylight can be seen and the scene is illuminated by natural light through the centre section of the roof
Paddington station, still a mainline station, was the London terminus of the Great Western Railway.

In the early part of Brunel's life, the use of railways began to take off as a major means of transport for goods. This influenced Brunel's involvement in railway engineering, including railway bridge engineering.

In 1833, before the Thames Tunnel was complete, Brunel was appointed chief engineer of the Great Western Railway, one of the wonders of Victorian Britain, running from London to Bristol and later Exeter.[39] The company was founded at a public meeting in Bristol in 1833, and was incorporated by Act of Parliament in 1835. It was Brunel's vision that passengers would be able to purchase one ticket at London Paddington and travel from London to New York, changing from the Great Western Railway to the Great Western steamship at the terminus in Neyland, West Wales.[39] He surveyed the entire length of the route between London and Bristol himself, with the help of many including his Solicitor Jeremiah Osborne of Bristol Law Firm Osborne Clarke who on one occasion rowed Isambard Kingdom Brunel down the River Avon himself to survey the bank of the river for the route.[40][41]

Brunel made two controversial decisions: to use a broad gauge of 7 ft 14 in (2,140 mm) for the track, which he believed would offer superior running at high speeds; and to take a route that passed north of the Marlborough Downs—an area with no significant towns, though it offered potential connections to Oxford and Gloucester—and then to follow the Thames Valley into London. His decision to use broad gauge for the line was controversial in that almost all British railways to date had used standard gauge. Brunel said that this was nothing more than a carry-over from the mine railways that George Stephenson had worked on prior to making the world's first passenger railway. Brunel proved through both calculation and a series of trials that his broader gauge was the optimum size for providing both higher speeds[42] and a stable and comfortable ride to passengers. In addition the wider gauge allowed for larger carriages and thus greater freight capacity.[43]

Inside a large building, a life size figure of a man in his late forties, dressed in nineteenth century jacket, trousers and waistcoat, with a prominent watch-chain across his chest. He wears a tall black stove-pipe hat, has long sideburns and has a cigar in his mouth. An old steam locomotive in the background.
A wax sculpture of Brunel, Swindon Steam Railway Museum

Drawing on Brunel's experience with the Thames Tunnel, the Great Western contained a series of impressive achievements—soaring viaducts such as the one in Ivybridge, specially designed stations, and vast tunnels including the Box Tunnel, which was the longest railway tunnel in the world at that time.[44] There is an anecdote that the Box Tunnel may have been deliberately orientated so that the rising sun shines all the way through it on Brunel's birthday.[45]

The initial group of locomotives ordered by Brunel to his own specifications proved unsatisfactory, apart from the North Star locomotive, and 20-year-old Daniel Gooch (later Sir Daniel) was appointed as Superintendent of Locomotive Engines. Brunel and Gooch chose to locate their locomotive works at the village of Swindon, at the point where the gradual ascent from London turned into the steeper descent to the Avon valley at Bath.

Brunel's achievements ignited the imagination of the technically minded Britons of the age, and he soon became quite notable in the country on the back of this interest.[46]

After Brunel's death the decision was taken that standard gauge should be used for all railways in the country. At the original Welsh terminus of the Great Western railway at Neyland, sections of the broad gauge rails are used as handrails at the quayside, and a number of information boards there depict various aspects of Brunel's life. There is also a larger than life bronze statue of him holding a steamship in one hand and a locomotive in the other. The statue has been replaced after an earlier theft.[47][48]

The present London Paddington station was designed by Brunel and opened in 1854. Examples of his designs for smaller stations on the Great Western and associated lines which survive in good condition include Mortimer, Charlbury and Bridgend (all Italianate) and Culham (Tudorbethan). Surviving examples of wooden train sheds in his style are at Frome[49] and Kingswear.[50]

The great achievement that was the Great Western Railway has been immortalised at Swindon Steam Railway Museum[51] and the Didcot Railway Centre. The Didcot Railway Centre is notable for having a reconstructed segment of 7 ft 14 in (2,140 mm) Brunel gauge track, as well as a very rare working steam locomotive in the same gauge.

Overall, there were negative views as to how society viewed the railways. Some landowners felt the railways were a threat to amenities or property values and others requested tunnels on their land so the railway could not be seen.[42]

Brunel's "atmospheric caper"

Exterior in woodland. a short section of railway line on wooden sleepers with a cast iron pipe of approximately one foot diameter, running inline with the rails
A reconstruction of Brunel's atmospheric railway, using a segment of the original piping at Didcot Railway Centre
A short section of iron pipe, about one foot diameter, with a slot in the upper surface
A section of the actual pipe in the Swindon Steam Railway Museum

Though unsuccessful, another of Brunel's interesting use of technical innovations was the atmospheric railway, the extension of the Great Western Railway (GWR) southward from Exeter towards Plymouth, technically the South Devon Railway (SDR), though supported by the GWR. Instead of using locomotives, the trains were moved by Clegg and Samuda's patented system of atmospheric (vacuum) traction, whereby stationary pumps sucked air from a pipe placed in the centre of the track.[52]

The section from Exeter to Newton (now Newton Abbot) was completed on this principle, and trains ran at approximately 68 miles per hour (109 km/h).[53] Pumping stations with distinctive square chimneys were sited at two-mile intervals.[53] Fifteen-inch (381 mm) pipes were used on the level portions, and 22-inch (559 mm) pipes were intended for the steeper gradients.

The technology required the use of leather flaps to seal the vacuum pipes. The natural oils were drawn out of the leather by the vacuum, making the leather vulnerable to water, rotting it and breaking the fibres when it froze during the winter of 1847. It had to be kept supple with tallow, which is attractive to rats. The flaps were eaten, and vacuum operation lasted less than a year, from 1847 (experimental service began in September; operations from February 1848) to 10 September 1848.[54] Deterioration of the valve due to the reaction of tannin and iron oxide has been cited as the last straw that sank the project, as the continuous valve began to tear from its rivets over most of its length, and the estimated replacement cost of £25,000 was considered prohibitive.

It has been suggested that the whole project was an expensive flop. In Brunel's favour, it has been noted that he had the courage to call a halt to the venture instead of struggling on with it at greater cost.

The system never managed to prove itself. The accounts of the SDR for 1848 suggest that atmospheric traction cost 3s 1d (three shillings and one penny) per mile compared to 1s 4d/mile for conventional steam power (because of the many operating issues associated with the atmospheric, few of which were solved during its working life, the actual cost efficiency proved impossible to calculate). A number of South Devon Railway engine houses still stand, including that at Totnes (scheduled as a grade II listed monument in 2007 to prevent its imminent demolition, even as Brunel's bicentenary celebrations were continuing) and at Starcross, on the estuary of the River Exe, which is a striking landmark, and a reminder of the atmospheric railway, also commemorated as the name of the village pub.[55][56]

A section of the pipe, without the leather covers, is preserved at the Didcot Railway Centre.[57]

Transatlantic shipping

Maiden voyage of the Great Western in April 1838
A crowd of people watch a large black and red ship with one funnel and six masts adorned with flags
Launch of the Great Britain in 1843

In 1835, before the Great Western Railway had opened, Brunel proposed extending its transport network by boat from Bristol across the Atlantic Ocean to New York City. The Great Western Steamship Company was formed by Thomas Guppy for that purpose. It was widely disputed whether it would be commercially viable for a ship powered purely by steam to make such long journeys. Technological developments in the early 1830s—including the invention of the surface condenser, which allowed boilers to run on salt water without stopping to be cleaned—made longer journeys more possible, but it was generally thought that a ship would not be able to carry enough fuel for the trip and have room for a commercial cargo. Brunel applied the experimental evidence of Beaufoy[58]and further developed the theory that the amount a ship could carry increased as the cube of its dimensions, whereas the amount of resistance a ship experienced from the water as it travelled only increased by a square of its dimensions.[59] This would mean that moving a larger ship would take proportionately less fuel than a smaller ship. To test this theory, Brunel offered his services for free to the Great Western Steamship Company, which appointed him to its building committee and entrusted him with designing its first ship, the Great Western.[60] [61][62]

An old photograph showing a large iron paddlewheel ship being launched sideways, with workmen thrusting large baulks of timber under a large drum of iron chains
Great Eastern shortly before launch in 1858
The Great Eastern in 1866.

When it was built, the Great Western was the longest ship in the world at 236 ft (72 m) with a 250-foot (76 m) keel. The ship was constructed mainly from wood, but Brunel added bolts and iron diagonal reinforcements to maintain the keel's strength. In addition to its steam-powered paddle wheels, the ship carried four masts for sails. The Great Western embarked on her maiden voyage from Avonmouth, Bristol, to New York on 8 April 1838 with 600 long tons (610,000 kg) of coal, cargo and seven passengers on board. Brunel himself missed this initial crossing, having been injured during a fire aboard the ship as she was returning from fitting out in London. As the fire delayed the launch several days, the Great Western missed its opportunity to claim title as the first ship to cross the Atlantic under steam power alone. Even with a four-day head start, the competing Sirius arrived only one day earlier and its crew was forced to burn cabin furniture, spare yards and one mast for fuel. In contrast, the Great Western crossing of the Atlantic took 15 days and five hours, and the ship arrived at her destination with a third of its coal still remaining, demonstrating that Brunel's calculations were correct. The Great Western had proved the viability of commercial transatlantic steamship service, which led the Great Western Steamboat Company to use her in regular service between Bristol and New York from 1838 to 1846. She made 64 crossings, and was the first ship to hold the Blue Riband with a crossing time of 13 days westbound and 12 days 6 hours eastbound. The service was commercially successful enough for a sister ship to be required, which Brunel was asked to design.[61][63][64]

Brunel had become convinced of the superiority of propeller-driven ships over paddle wheels. After tests conducted aboard the propeller-driven steamship Archimedes, he incorporated a large six-bladed propeller into his design for the 322-foot (98 m) Great Britain, which was launched in 1843.[65] Great Britain is considered the first modern ship, being built of metal rather than wood, powered by an engine rather than wind or oars, and driven by propeller rather than paddle wheel. She was the first iron-hulled, propeller-driven ship to cross the Atlantic Ocean.[66] Her maiden voyage was made in August and September 1845, from Liverpool to New York. In 1846, she was run aground at Dundrum, County Down. She was salvaged and employed in the Australian service.[67] She is currently fully preserved and open to the public in Bristol, UK.

A group of ten men in nineteenth century dark suits, wearing top hats, observing something behind the camera
Brunel at the launch of the Great Eastern with John Scott Russell and Lord Derby

In 1852 Brunel turned to a third ship, larger than her predecessors, intended for voyages to India and Australia. The Great Eastern (originally dubbed Leviathan) was cutting-edge technology for her time: almost 700 ft (210 m) long, fitted out with the most luxurious appointments, and capable of carrying over 4,000 passengers. Great Eastern was designed to cruise non-stop from London to Sydney and back (since engineers of the time misunderstood that Australia had no coal reserves), and she remained the largest ship built until the start of the 20th century. Like many of Brunel's ambitious projects, the ship soon ran over budget and behind schedule in the face of a series of technical problems.[68] The ship has been portrayed as a white elephant, but it has been argued by David P. Billington that in this case Brunel's failure was principally one of economics—his ships were simply years ahead of their time.[69] His vision and engineering innovations made the building of large-scale, propeller-driven, all-metal steamships a practical reality, but the prevailing economic and industrial conditions meant that it would be several decades before transoceanic steamship travel emerged as a viable industry.[69]

Great Eastern was built at John Scott Russell's Napier Yard in London, and after two trial trips in 1859, set forth on her maiden voyage from Southampton to New York on 17 June 1860.[70] Though a failure at her original purpose of passenger travel, she eventually found a role as an oceanic telegraph cable-layer. Under Captain Sir James Anderson, the Great Eastern played a significant role in laying the first lasting transatlantic telegraph cable, which enabled telecommunication between Europe and North America.[71][72]

Renkioi Hospital

Main article: Renkioi Hospital

During 1854 Britain entered into the Crimean War, and an old Turkish barracks became the British Army Hospital in Scutari. Injured men contracted a variety of illnesses—including cholera, dysentery, typhoid and malaria—due to poor conditions there,[73] and Florence Nightingale sent a plea to The Times for the government to produce a solution.

Brunel was working on the Great Eastern amongst other projects, but accepted the task in February 1855 of designing and building the War Office requirement of a temporary, pre-fabricated hospital that could be shipped to Crimea and erected there. In 5 months the team he had assembled designed, built, and shipped pre-fabricated wood and canvas buildings, providing them complete with advice on transportation and positioning of the facilities.[74]

Brunel had been working Gloucester Docks-based William Eassrie on the launching stage for the Great Eastern, a man who had designed and built wooden prefabricated huts used in both the Australian gold rush, as well as by the British and French Armies in the Crimea. Using wood supplied by timber importers Price & Co., Eassrie fabricated 18 of the two-50 patient wards designed by Brunel, shipped directly via 16 ships from Gloucester Docks to the Dardanelles. The Renkioi Hospital was subsequently erected near Scutari Hospital, where Nightingale was based, in the malaria-free area of Renkioi.[75]

His designs incorporated the necessities of hygiene: access to sanitation, ventilation, drainage, and even rudimentary temperature controls. They were feted as a great success, with some sources stating that of the approximately 1,300 patients treated in the hospital, there were only 50 deaths.[76] In the Scutari hospital it replaced, deaths were said to be as many as 10 times this number. Nightingale referred to them as "those magnificent huts".[77] The practice of building hospitals from pre-fabricated modules survives today,[75] with hospitals such as the Bristol Royal Infirmary being created in this manner.

Personal life

In 1830, he was elected a Fellow of the Royal Society.

On 5 July 1836, Brunel married Mary Elizabeth Horsley (b. 1813), who came from an accomplished musical and artistic family, being the eldest daughter of composer and organist William Horsley. They established a home at Duke Street, Westminster, in London.[78]

A cubical white marble work of masonry, approximately three feet wide, 18 inches deep and two-foot high, inscribed with names of members of the Brunel family, surrounded by marble chippings
The Brunel family grave, Kensal Green Cemetery, London

In 1843, while performing a conjuring trick for the amusement of his children, Brunel accidentally inhaled a half-sovereign coin, which became lodged in his windpipe. A special pair of forceps failed to remove it, as did a machine devised by Brunel to shake it loose. At the suggestion of his father, Brunel was strapped to a board and turned upside-down, and the coin was jerked free.[79] He recuperated at Teignmouth, and enjoyed the area so much that he purchased an estate at Watcombe in Torquay, Devon. Here he designed Brunel Manor and its gardens to be his country home.[80] He never saw the house or gardens finished, as he died before it was completed.

Brunel, a heavy smoker,[81] suffered a stroke in 1859, just before the Great Eastern made her first voyage to New York.[82] He died ten days later at the age of 53 and was buried, like his father, in Kensal Green Cemetery in London.[83][84] The grave is insignificant by the standards of the cemetery and easily missed. It lies south of the main central path, midway between the entrance and the central chapel, around 20m from the path and screened by trees.

He left behind his wife Mary and three children: Isambard Brunel Junior (1837–1902), Henry Marc Brunel (1842–1903) and Florence Mary Brunel (1847–1876). Henry Marc followed his father and grandfather in becoming a successful civil engineer.[85][86]

Legacy

A bronze metal sculpture of a nineteenth century man wearing a long jacket or coat, trousers, waistcoat, with draughtsman's tools in his hands
Bronze statue of Brunel at Temple in London

A celebrated engineer in his era, Brunel remains revered today, as evidenced by numerous monuments to him. There are statues in London at Temple (pictured), Brunel University and Paddington station, and in Bristol, Plymouth, Swindon, Milford Haven and Saltash. A statue in Neyland was stolen in August 2010.[87] The topmast of the Great Eastern is used as a flagpole at the entrance to Anfield, Liverpool Football Club's ground.[88] Contemporary locations bear Brunel's name, such as Brunel University in London,[89] shopping centres in Swindon and also Bletchley, Milton Keynes, and a collection of streets in Exeter: Isambard Terrace, Kingdom Mews, and Brunel Close. A road, car park, and school in his home city of Portsmouth are also named in his honour, along with one of the city's largest public houses.[90] There is an engineering lab building at the University of Plymouth named in his honour.

In a 2002 public television poll conducted by the BBC to select the 100 Greatest Britons, Brunel was placed second, behind Winston Churchill.[91] Brunel's life and works have been depicted in numerous books, films and television programs. The 2003 book and BBC TV series Seven Wonders of the Industrial World included a dramatisation of the building of the Great Eastern.

Many of Brunel's bridges are still in use. Brunel's first engineering project, the Thames Tunnel, is now part of the London Overground network. The Brunel Engine House at Rotherhithe, which once housed the steam engines that powered the tunnel pumps, now houses the Brunel Museum dedicated to the work and lives of Marc and Isambard Kingdom Brunel.[92] Many of Brunel's original papers and designs are now held in the Brunel Institute alongside the SS Great Britain in Bristol, and are freely available for researchers and visitors.

Brunel is credited with turning the town of Swindon into one of the fastest growing towns in Europe during the 19th century.[93] Brunel's choice to locate the Great Western Railway locomotive sheds there caused a need for housing for the workers, which in turn gave Brunel the impetus to build hospitals, churches and housing estates in what is known today as the 'Railway Village'.[94] According to some sources, Brunel's addition of a Mechanics Institute for recreation and hospitals and clinics for his workers gave Aneurin Bevan the basis for the creation of the National Health Service.[95]

FGW HST 43003 power car

GWR Castle Class steam locomotive no. 5069 was named Isambard Kingdom Brunel,[96] after the engineer;[97] and BR Western Region class 47 diesel locomotive no. D1662 (later 47484) was also named Isambard Kingdom Brunel.[98] GWR's successor First Great Western has named its high-speed train power car no. 43003 "Isambard Kingdom Brunel".

In 2006 the Royal Mint struck two £2 coins to "celebrate the 200th anniversary of Isambard Kingdom Brunel and his achievements".[99] The first depicts Brunel with a section of the Royal Albert Bridge and the second shows the roof of Paddington Station. The Post Office issued a set of commemorative stamps.

For the 100th anniversary of the Royal Albert Bridge, the words "I.K. BRUNEL ENGINEER 1859" were engraved on either end to commemorate his enduring legacy. The words had become obscured by paint, but were restored by Network Rail and revealed again in 2006.[100]

Brunel was the subject of Great, a 1975 animated film directed by Bob Godfrey. It won the Academy Award for Animated Short Film at the 48th Academy Awards in March 1976.[101]

The song "The Underfall Yard" on progressive rock band Big Big Train's 2009 album of the same name is a homage to several great English engineers, including Brunel, who worked on the Underfall Yard itself in the 1830s.[102]

At the 2012 Summer Olympics opening ceremony, Brunel was portrayed by Kenneth Branagh in a segment showing the Industrial Revolution.[103]

The steampunk musical group The Men That Will Not Be Blamed for Nothing performed a song called Brunel on their album This May Be The Reason Why The Men That Will Not Be Blamed For Nothing Cannot Be Killed By Conventional Weapons, released in 2012. The song makes reference to Brunel's achievements as an engineer.[104]

The 2013 album The Last Ship by Sting includes the song "Ballad of the Great Eastern".[105]

See also

Notes

  1. "Isambard Kingdom Brunel". Design Museum. Retrieved 11 June 2015.
  2. "Isambard Kingdom Brunel". ss Great Britain. Retrieved 11 June 2015.
  3. Rolt, Lionel Thomas Caswall (1957). Isambard Kingdom Brunel (first ed.). London: Longmans, Green & Co. p. 245.
  4. Wilson 1994, pp. 202–3.
  5. "Isambard Kingdom Brunel". SS Great Britain. 29 March 2006.
  6. "Home". Brunel 200. Retrieved 22 July 2009.
  7. Harrison, Henry. Surnames of the United Kingdom: A Concise Etymological Dictionary. p. 230.
  8. Brindle, Steven (2005). Brunel: The Man Who Built the World. Weidenfield & Nicholson. p. 28. ISBN 0-297-84408-3.
  9. Brunel 1870, p. 2.
  10. Timbs, John (1860). Stories of inventors and discoverers in science and the useful arts. London: Kent and Co. pp. 102, 285–6. OCLC 1349834.
  11. "Isambard Kingdom Brunel: Family History". tracingancestors-uk.com.
  12. 1 2 3 Buchanan (2006), p. 18
  13. Gillings 2006, pp. 1, 11.
  14. 1 2 Brunel, Isambard (1870), p. 5.
  15. Gillings 2006, pp. 11–12.
  16. Worth, Martin (1999). Sweat and Inspiration: Pioneers of the Industrial Age. Alan Sutton Publishing Ltd. p. 87. ISBN 978-0-7509-1660-8.
  17. Dumpleton & Miller 2002, pp. 14–15.
  18. Aaseng, Nathan (1999). Construction: Building The Impossible. Innovators Series. The Oliver Press, Inc. pp. 36–45. ISBN 1-881508-59-5.
  19. Smith, Denis (2001). Civil Engineering Heritage: London and the Thames Valley. Thomas Telford Ltd, for The Institution of Civil Engineers. pp. 17–19. ISBN 978-0-7277-2876-0. Retrieved 16 August 2009.
  20. Sources disagree about where Brunel convalesced; Buchanan (p. 30) says Brighton, while Dumpleton and Miller (p. 16) say Bristol and connect this to his subsequent work on the Clifton Suspension Bridge there.
  21. Dumpleton & Miller 2002, p. 15.
  22. Bagust, Harold, "The Greater Genius?", 2006, Ian Allan Publishing, ISBN 0-7110-3175-4, (pages 97–100)
  23. Rolt 1989, p. 53.
  24. 1 2 "The Clifton Suspension Bridge". Brunel 200. Retrieved 16 August 2009.
  25. 1 2 Peters, Professor G Ross. "Brunel: 'The Practical Prophet'". BBC History. Retrieved 27 August 2009.
  26. Bryan, Tim (1999). Brunel: The Great Engineer. Shepperton: Ian Allan. pp. 35–41. ISBN 978-0-7110-2686-5.
  27. MacLeod, Donald (18 April 2006). "Higher diary". The Guardian. Retrieved 27 August 2009.
  28. "Isambard Kingdom Brunel did not design Clifton Suspension Bridge, says historian". The Daily Telegraph. London. Retrieved 22 December 2012.
  29. "The Hungerford Suspension Bridge". The Practical Mechanic and Engineer's Magazine: 223. May 1845.
  30. "Get set to pay more on suspension bridge". Bristol Evening Post. 6 January 2007. p. 12.
  31. Dunning, R W (1992). C R Elrington, C R; Baggs, A P; Siraut, M C, eds. "Bridgwater". A History of the County of Somerset: Volume 6. British History Online. Retrieved 16 August 2009.
  32. Gordon, J E (1978). Structures: or why things don't fall down. London: Penguin. p. 200. ISBN 0-14-013628-2.
  33. Lewis, Brian (18 June 2007). Brunel's timber bridges and viaducts. Hersham: Ian Allan Publishing. ISBN 978-0-7110-3218-7.
  34. "History". Royal Albert Bridge. Archived from the original on 9 November 2006. Retrieved 16 August 2009.
  35. Senior Archaeological Officer (20 September 2006). "Crossrail and the Great Western World Heritage site" (PDF). Buckinghamshire Historic Environment Forum. Buckinghamshire County Council. Retrieved 16 August 2009.
  36. "World Heritage Sites: The Tentative List of The United Kingdom of Great Britain and Northern Ireland" (PDF). Buildings, Monuments and Sites Division. Department for Culture, Media and Sport. 1999. Retrieved 16 August 2009.
  37. "Disused Stations: Station". disused-stations.org.uk.
  38. "Grand Union Canal Walk". grandunioncanalwalk.co.uk.
  39. 1 2 Crittal, Elizabeth (1959). "Railways". A History of the County of Wiltshire: Volume 4. British History Online. Retrieved 16 August 2009.
  40. "Clifton Rugby Football Club History".
  41. "Brunel 200 – Working With Visionaries" (PDF).
  42. 1 2 Pudney, John (1974). Brunel and His World. Thames and Hudson. ISBN 978-0-500-13047-6.
  43. Ollivier, John (1846). The Broad Gauge: The Bane of the Great Western Railway Company.
  44. Dumpleton & Miller 2002, p. 20.
  45. Williams, Archibald (1904). The Romance of Modern Locomotion. C. A. Pearson Ltd.
  46. "Isambard Kingdom Brunel: Obituary" (fee required). The Times. 19 September 1859. Retrieved 28 August 2009.
  47. "Neyland – Brunel's railway town". Western Telegraph. 22 April 2006. Retrieved 16 August 2009.
  48. "Stolen statue of Isambard Kingdom Brunel in Neyland is replaced". BBC. Retrieved 26 December 2015.
  49. "Frome Station roof". Engineering Timelines. Retrieved 27 August 2009.
  50. "Kingswear Station". South Hams District Council. Archived from the original (PDF) on 28 August 2009. Retrieved 27 August 2009.
  51. "Steam: Museum of the Great Western Railway". Swindon Borough Council. Archived from the original on 14 September 2008. Retrieved 28 August 2009.
  52. Buchanan, R A (May 1992). "The Atmospheric Railway of I.K. Brunel". Social Studies of Science. Sage Publications, Ltd. 22 (2): 231–243. doi:10.1177/030631292022002003. JSTOR 285614. (subscription required (help)).
  53. 1 2 Dumpleton and Miller (2002), p. 22
  54. Parkin, Jim (2000). Engineering Judgement and Risk. Institution of Civil Engineers. ISBN 978-0-7277-2873-9.
  55. "Devon Railways". Teignmouth & Shaldon Museum. Retrieved 16 August 2009.
  56. "Brunel and The Atmospheric Caper". Devon Heritage. Retrieved 16 August 2009.
  57. "Broad Gauge Railway". Centre Guide. Didcot Railway Centre. Retrieved 16 August 2009.
  58. Beaufoy 1834.
  59. Garrison 1998, p. 188.
  60. Buchanan 2006, pp. 57–59.
  61. 1 2 Beckett (2006), pp. 171–173
  62. Dumpleton & Miller 2002, pp. 34–46.
  63. Buchanan 2006, pp. 58–59.
  64. Dumpleton & Miller 2002, pp. 26–32.
  65. Nasmyth, James (1897). Smiles, Samuel, ed. James Nasmyth: Engineer, An Autobiography. Archived at Project Gutenberg. Retrieved 14 December 2015.
  66. Lienhard, John H (2003). The Engines of Our Ingenuity. Oxford University Press (US). ISBN 978-0-19-516731-3.
  67. Chisholm 1911.
  68. Dumpleton & Miller 2002, pp. 94–113.
  69. 1 2 Billington 1985, pp. 50-59.
  70. Mortimer, John (2005). Zerah Colburn: The Spirit of Darkness. Arima Publishing. ISBN 978-1-84549-196-3.
  71. Dumpleton & Miller 2002, pp. 130–148.
  72. "The Atlantic Cable". The New York Times. 30 July 1866. Retrieved 28 August 2009.
  73. "Report on Medical Care". British National Archives. 23 February 1855. WO 33/1 ff.119, 124, 146–7.
  74. "Prefabricated wooden hospitals". British National Archives. 7 September 1855. WO 43/991 ff.76–7.
  75. 1 2 "Lessons from Renkioi" at the Wayback Machine (archived 29 September 2007). Hospital Development Magazine. 10 November 2005. Retrieved 22 September 2009.
  76. "Palmerston, Brunel and Florence Nightingale's Field Hospital" (pdf). HMSwarrior.org. Retrieved 30 November 2006.
  77. "Britain's Modern Brunels]". BBC Radio 4. Retrieved 30 November 2006.
  78. "The 1830s". Brunel 200. Retrieved 16 August 2009.
  79. Dyer, T.F.Thiselton (2003). Strange Pages from Family Papers (1900). Kessinger Publishing. pp. 282–283. ISBN 978-0-7661-5346-2.
  80. Tudor 2007, p. 19.
  81. Ignacio Villarreal (6 January 2011). "Churchill, The Windsors and 420 Million Year Old Tree Trunk Star in Bonhams Gentleman's Library Sale". Artdaily.com. Retrieved 22 December 2012.
  82. Cadbury, Deborah (2003). Seven Wonders of the Industrial World. Fourth Estate. p. 43. ISBN 0-00-716304-5.
  83. "Index entry". FreeBMD. ONS. Retrieved 14 August 2016.
  84. "Grave of Isambard Kingdom Brunel". Engineering Timelines. Retrieved 13 December 2015.
  85. "Brunel Collection: Isambard Kingdom Brunel (1806–1859) papers". Archives Hub. Archived from the original on 31 May 2012. Retrieved 16 August 2009.
  86. Buchanan 2006, pp. 7–8.
  87. "Brunel statue stolen from plinth". BBC News. 23 August 2010. Retrieved 22 December 2012.
  88. Pollard, Richard; Pevsner, Nikolaus; Sharples, Joseph (2009). Lancashire: Liverpool and the southwest. Yale University Press. p. 397. ISBN 978-0-300-10910-8.
  89. "History". Brunel University. 2009. Retrieved 11 September 2009.
  90. "The Isambard Kingdom Brunel, Portsmouth | Our Pubs". J D Wetherspoon. 12 April 2006. Retrieved 22 December 2012.
  91. "Churchill voted greatest Briton". BBC News online. 24 November 2002. Retrieved 4 June 2009.
  92. "Brunel Museum". Brunel Museum. Retrieved 16 August 2009.
  93. Tye, Stephanie (20 January 2006). "How Town was put on the map by Brunel". Swindon Advertiser. Retrieved 22 September 2009.
  94. Beckett 2006, pp. 115–122.
  95. "A Model for the NHS?]". BBC Legacies. Retrieved 30 November 2006.
  96. le Fleming 1960, p. H18.
  97. Davies 1993, p. P127.
  98. Marsden 1984, p. 66.
  99. "2006 Brunel The Man £2 Silver Proof". Royal Mint. Archived from the original on 22 May 2006. Retrieved 16 August 2009.
  100. "Brunel Bicentennial Celebrations" (Press release). www.networkrailmediacentre.co.uk. 16 June 2009. Archived from the original on 28 September 2007. Retrieved 22 July 2009.
  101. "The 48th Academy Awards (1976) Nominees and Winners". oscars.org. Retrieved 2 October 2011.
  102. "The Underfall Yard". Big Big Train. Retrieved 13 December 2015.
  103. Boyle, Danny (28 July 2012). "Danny Boyle Welcomes The World To London". The Descrier. Retrieved 28 July 2012.
  104. "Brunel The Men That Will Not Be Blamed For Nothing". Musixmatch. Retrieved 13 December 2015.
  105. "Sting on tantric sex, Justin Bieber and pretentiousness". The Guardian. London. Retrieved 28 September 2013.

References

Further reading

External links

Wikimedia Commons has media related to
Isambard Kingdom Brunel
.
This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.