Carbon black

For the climate forcing agent, see Black carbon. For the Carbon Black security company, see Carbon Black (company).
Carbon black

Carbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of heavy petroleum products such as FCC tar, coal tar, ethylene cracking tar, and a small amount from vegetable oil. Carbon black is a form of paracrystalline carbon that has a high surface-area-to-volume ratio, albeit lower than that of activated carbon. It is dissimilar to soot in its much higher surface-area-to-volume ratio and significantly lower (negligible and non-bioavailable) PAH (polycyclic aromatic hydrocarbon) content. However, carbon black is widely used as a model compound for diesel soot for diesel oxidation experiments.[1] Carbon black is mainly used as a reinforcing filler in tires and other rubber products. In plastics, paints, and inks carbon black is used as a color pigment.[2]

The current International Agency for Research on Cancer (IARC) evaluation is that, "Carbon black is possibly carcinogenic to humans (Group 2B)".[3] Short-term exposure to high concentrations of carbon black dust may produce discomfort to the upper respiratory tract, through mechanical irritation.

Common uses

Total production was around 8,100,000 metric tons (8,900,000 short tons) in 2006.[4] Global consumption of Carbon Black, estimated at 13.2 million metric tons valued at US$13.7 billion in 2015, is expected to reach 13.9 million metric tons equated to US$14.4 billion in 2016 and further forecast to maintain a CAGR of 5.6% between 2016 and 2022 to reach 19.2 million metric tons equalent of US$20.4 billion by 2022. [5] The most common use (70%) of carbon black is as a pigment and reinforcing phase in automobile tires. Carbon black also helps conduct heat away from the tread and belt area of the tire, reducing thermal damage and increasing tire life. Carbon black particles are also employed in some radar absorbent materials used in the reduction of the radar cross-section of aircraft and in photocopier and laser printer toner, and other inks and paints. The high tinting strength and stability of carbon black has also provided use in coloring of resins and films.[6] About 20% of world production goes into belts, hoses, and other non-tire rubber goods. The balance is mainly used as a pigment in inks, coatings and plastics. For example, it is added to polypropylene because it absorbs ultraviolet radiation, which otherwise causes the material to degrade.

Carbon black from vegetable origin is used as a food coloring, in Europe known as additive E153. It is approved for use as additive 153 (Carbon blacks or Vegetable carbon)[7] in Australia and New Zealand[7] but has been banned in the US.[8]

Carbon black has been used in various applications for electronics. As a good conductor of electricity, carbon black is used as a filler mixed in plastics, elastomer, films, adhesives, and paints.[6] Application of carbon black as an antistatic agent has provided uses as an additive for fuel caps and pipes for automobiles.

Additionally, the color pigment carbon black has been widely used in food and beverage packaging around the world for many years. It is used in multi-layer UHT milk bottles in the US, parts of Europe and Asia, and South Africa, and in items like microwavable meal trays and meat trays in New Zealand.

The Canadian Government’s assessment (an extensive review of carbon black) in 2011 concluded that carbon black should continue to be used in products – including food packaging for consumers – in Canada. This was because “in most consumer products carbon black is bound in a matrix and unavailable for exposure, for example as a pigment in plastics and rubbers” and “it is proposed that carbon black is not entering the environment in a quantity or concentrations or under conditions that constitute or may constitute a danger in Canada to human life or health.”[9]

Within Australasia the safe use of the color pigment carbon black in packaging must comply with the requirements of either the EU or US packaging regulations and if any colorant is used it must meet European partial agreement AP(89)1.[10]

There are strict guidelines available and in place to ensure employees who manufacture carbon black are not in a working environment where they are at risk of inhaling unsafe doses of carbon black in its raw form.[11]

Reinforcing carbon blacks

The highest volume use of carbon black is as a reinforcing filler in rubber products, especially tires. While a pure gum vulcanization of styrene-butadiene has a tensile strength of no more than 2.5 MPa, and almost nonexistent abrasion resistance, compounding it with 50% of its weight of carbon black improves its tensile strength and wear resistance as shown in the below table. It is used often in the Aerospace industry in elastomers for aircraft vibration control components such as engine mounts.

Types of carbon black used in tires
Name Abbrev. ASTM
desig.
Particle
Size
nm
Tensile
strength
MPa
Relative
laboratory
abrasion
Relative
roadwear
abrasion
Super Abrasion Furnace SAF N110 20–25 25.2 1.35 1.25
Intermediate SAF ISAF N220 24–33 23.1 1.25 1.15
High Abrasion Furnace HAF N330 28–36 22.4 1.00 1.00
Easy Processing Channel EPC N300 30–35 21.7 0.80 0.90
Fast Extruding Furnace FEF N550 39–55 18.2 0.64 0.72
High Modulus Furnace HMF N660 49–73 16.1 0.56 0.66
Semi-Reinforcing Furnace SRF N770 70–96 14.7 0.48 0.60
Fine Thermal FT N880 180–200 12.6 0.22
Medium Thermal MT N990 250–350 9.8 0.18

Practically all rubber products where tensile and abrasion wear properties are crucial use carbon black, so they are black in color. Where physical properties are important but colors other than black are desired, such as white tennis shoes, precipitated or fumed silica has been used as a substitute for carbon black in reinforcing ability. Silica-based fillers are also gaining market share in automotive tires because they provide better trade-off for fuel efficiency and wet handling due to a lower rolling loss compared to carbon black-filled tires. Traditionally silica fillers had worse abrasion wear properties, but the technology has gradually improved to a point where they can match carbon black abrasion performance.

Pigment

Carbon black (Color Index International, PBK-7) is the name of a common black pigment, traditionally produced from charring organic materials such as wood or bone. It appears black because it reflects very little light in the visible part of the spectrum, with an albedo near zero. The actual albedo varies depending on the source material and method of production. It is known by a variety of names, each of which reflects a traditional method for producing carbon black:

All above types of carbon black pigments were used extensively in painting since prehistoric times.[12] Painters such as Rembrandt, Vermeer, Van Dyck, but also more recently Cézanne, Picasso and Manet[13] employed them in their paintings. A typical example is Manet's "Music in the Tuileries",[14] where the black dresses and hats of the men are painted in ivory black.[15]

Newer methods of producing carbon black have superseded these traditional sources, although some materials are still produced using traditional methods. For artisanal purposes, carbon black produced by any means remains a commonly used item.[6]

Surface chemistry

All carbon blacks have chemisorbed oxygen complexes (i.e., carboxylic, quinonic, lactonic, phenolic groups and others) on their surfaces to varying degrees depending on the conditions of manufacture. These surface oxygen groups are collectively referred to as volatile content. It is also known to be a non-conductive material due to its volatile content.

The coatings and inks industries prefer grades of carbon black that are acid-oxidized. Acid is sprayed in high-temperature dryers during the manufacturing process to change the inherent surface chemistry of the black. The amount of chemically-bonded oxygen on the surface area of the black is increased to enhance performance characteristics.

Safety

Carcinogenicity

Carbon black is considered possibly carcinogenic to humans and classified as a Group 2B carcinogen, because there is sufficient evidence in experimental animals with inadequate evidence in human epidemiological studies.[3] The body of evidence of carcinogenicity in animal studies comes from two chronic inhalation studies and two intratracheal instillation studies in rats, which showed significantly elevated rates of lung cancer in exposed animals.[3] An inhalation study was tested on mice, but did not show significantly elevated rates of lung cancer in exposed animals.[3] Epidemiologic data comes from three different cohort studies of carbon black production workers. Two studies, from the United Kingdom and Germany, with over 1,000 workers in each study group, showed elevated mortality from lung cancer in the carbon black workers.[3] Another study of over 5,000 workers in the United States did not show elevated mortality from lung cancer in the carbon black workers.[3] Newer findings of increased lung cancer mortality in an update from the UK study may suggest that carbon black could be a late-stage carcinogen.[16][17] However, a more recent and larger study from Germany did not confirm this hypothesis that carbon black acts as a late-stage carcinogen.[18]

Occupational safety

In order to properly protect workers from inhalation of carbon black, respiratory personal protective equipment is recommended. The type of respiratory protection varies, depending on the concentration of carbon black used.[19]

People can be exposed to carbon black in the workplace by breathing it in, skin contact, or eye contact. The Occupational Safety and Health Administration (OSHA) has set the legal limit (Permissible exposure limit) for carbon black exposure in the workplace as 3.5 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 3.5 mg/m3 over an 8-hour workday. At levels of 1750 mg/m3, carbon black is immediately dangerous to life and health.[20]

See also

References

  1. "Experimental and kinetic study of the interaction of a commercial soot toward no at high temperature" (PDF). Retrieved 2012-04-25.
  2. "Market Study: Carbon Black". Ceresana. Retrieved 2013-04-26.
  3. 1 2 3 4 5 6 Kuempel, Eileen D.; Sorahan, Tom (2010). "Identification of Research Needs to Resolve the Carcinogenicity of High-priority IARC Carcinogens" (PDF). Views and Expert Opinions of an IARC/NORA Expert Group Meeting, Lyon, France, 30 June – 2 July 2009. IARC Technical Publication No. 42. Lyon, France: International Agency for Research on Cancer. 42: 61–72. Retrieved August 30, 2012.
  4. "What is carbon black". International carbon black Association. Retrieved 2009-04-14.
  5. Carbon Black - A Global Market Overview Jan 2016 • Industry Experts Report CP024 • 328 pages
  6. 1 2 3 "Application Examples of carbon black". Mitsubishi Chemical. Retrieved 2013-01-14.
  7. 1 2 Australia New Zealand Food Standards Code"Standard 1.2.4 – Labelling of ingredients". Retrieved 2011-10-27.
  8. US FDA:"Colour Additive Status List". Retrieved 2011-10-27.
  9. "Draft Screening Assessment for the Challenge". Retrieved 2013-01-14.
  10. "Australia New Zealand Food Standards Code". Retrieved 2013-01-14.
  11. "Occupational Safety and Health Guidelines for carbon black: Potential Human Carcinogen, Centres of Disease Control and Prevention, National Institute for Occupational Safety and Health" (PDF). Retrieved 2013-01-14.
  12. Winter, J. and West FitzHugh, E., Pigments based on Carbon, in Berrie, B.H. Editor, Artists’ Pigments, A Handbook of Their History and Characteristics, Volume 4, pp. 1–37.
  13. Bone black, ColourLex
  14. Bomford D, Kirby J, Leighton, J., Roy A. Art in the Making: Impressionism. National Gallery Publications, London, 1990, pp. 112–119.
  15. Édouard Manet, 'Music in the Tuileries Gardens', ColourLex
  16. Sorahan T, Harrington JM (2007). "A "lugged" analysis of lung cancer risks in UK carbon black production workers, 1951–2004". Am J Ind Med. 50 (8): 555–564. doi:10.1002/ajim.20481. PMID 17516558.
  17. Ward EM, Schulte PA, Straif K, Hopf NB, Caldwell JC, Carreón T, DeMarini DM, Fowler BA, Goldstein BD, Hemminki K, Hines CJ, Pursiainen KH, Kuempel E, Lewtas J, Lunn RM, Lynge E, McElvenny DM, Muhle H, Nakajima T, Robertson LW, Rothman N, Ruder AM, Schubauer-Berigan MK, Siemiatycki J, Silverman D, Smith MT, Sorahan T, Steenland K, Stevens RG, Vineis P, Zahm SH, Zeise L, Cogliano VJ (2010). "Research recommendations for selected IARC-classified agents". Environmental Health Perspectives. 118 (10): 1355–62. doi:10.1289/ehp.0901828. PMC 2957912Freely accessible. PMID 20562050.
  18. Morfeld P, McCunney RJ (2007). "Carbon black and lung cancer: Testing a new exposure metric in a German cohort". Am J Ind Med. 50 (8): 565–567. doi:10.1002/ajim.20491. PMID 17620319.
  19. "Occupational Safety and Health Guideline for Carbon Black: Potential Human Carcinogen" (PDF). Centers of Disease Control and Prevention, National Institute for Occupational Safety and Health. Retrieved 11 January 2013.
  20. "CDC – NIOSH Pocket Guide to Chemical Hazards – Carbon black". www.cdc.gov. Retrieved 2015-11-27.

Further reading

  • Doerner, Max. The Materials of the Artist and Their Use in Painting: With Notes on the Techniques of the Old Masters, Revised Edition. Harcourt (1984). ISBN 0-15-657716-X. This is a contemporary English language edition of a work originally published in German.
  • Meyer, Ralph. The Artist's Handbook of Materials and Techniques. Fifth Edition, Revised and Updated. Viking (1991) ISBN 0-670-83701-6
  • Carbon Black: A users guide. Published by the International Carbon Black Association.
Wikisource has the text of a 1920 Encyclopedia Americana article about Carbon black.
This article is issued from Wikipedia - version of the 11/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.