NSUN2

NSUN2
Identifiers
Aliases NSUN2, MISU, MRT5, SAKI, TRM4, NOP2/Sun RNA methyltransferase family member 2
External IDs MGI: 107252 HomoloGene: 9817 GeneCards: NSUN2
Orthologs
Species Human Mouse
Entrez

54888

28114

Ensembl

ENSG00000037474

ENSMUSG00000021595

UniProt

Q08J23

Q1HFZ0

RefSeq (mRNA)

NM_001193455
NM_017755

NM_145354

RefSeq (protein)

NP_001180384.1
NP_060225.4

NP_663329.3

Location (UCSC) Chr 5: 6.6 – 6.63 Mb Chr 13: 69.53 – 69.64 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

NOP2/Sun domain family, member 2 is a protein that in humans is encoded by the NSUN2 gene.[3] Alternatively spliced transcript variants encoding different isoforms have been noted for the gene.

Function

The protein is a methyltransferase that catalyzes the methylation of cytosine to 5-methylcytosine (m5C) at position 34 of intron-containing tRNA (Leu)(CAA) precursors. This modification is necessary to stabilize the anticodon-codon pairing and correctly translate the mRNA.[3]

Clinical relevance

Mutations in this gene have been found associated to cases of Dubowitz-like syndrome.[4]

Model organisms

Model organisms have been used in the study of NSUN2 function. A conditional knockout mouse line, called Nsun2tm1a(EUCOMM)Wtsi[19][20] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[21][22][23]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[17][24] Twenty eight tests were carried out on mutant mice and fourteen significant abnormalities were observed. Homozygous mutants were subviable and had decreased body weights, length of long bones and decreased circulating glucose levels, numerous abnormal body composition, X-ray imaging, eye morphology and haematology parameters; males also had a decreased grip strength, a short upturned snout, and abnormal indirect calorimetry and plasma chemistry parameters.[17] Males (but not females) were also infertile.[17] In addition, heterozygote mutants displayed premature hair follicle exogen.[17]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. 1 2 "NOP2/Sun domain family, member 2". Retrieved 2011-12-04.
  4. Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG (June 2012). "Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome". J. Med. Genet. 49 (6): 380–5. doi:10.1136/jmedgenet-2011-100686. PMID 22577224.
  5. "Body weight data for Nsun2". Wellcome Trust Sanger Institute.
  6. "Grip strength data for Nsun2". Wellcome Trust Sanger Institute.
  7. "Dysmorphology data for Nsun2". Wellcome Trust Sanger Institute.
  8. "Indirect calorimetry data for Nsun2". Wellcome Trust Sanger Institute.
  9. "Glucose tolerance test data for Nsun2". Wellcome Trust Sanger Institute.
  10. "DEXA data for Nsun2". Wellcome Trust Sanger Institute.
  11. "Radiography data for Nsun2". Wellcome Trust Sanger Institute.
  12. "Eye morphology data for Nsun2". Wellcome Trust Sanger Institute.
  13. "Clinical chemistry data for Nsun2". Wellcome Trust Sanger Institute.
  14. "Haematology data for Nsun2". Wellcome Trust Sanger Institute.
  15. "Salmonella infection data for Nsun2". Wellcome Trust Sanger Institute.
  16. "Citrobacter infection data for Nsun2". Wellcome Trust Sanger Institute.
  17. 1 2 3 4 5 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  18. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  19. "International Knockout Mouse Consortium".
  20. "Mouse Genome Informatics".
  21. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  22. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  23. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  24. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837Freely accessible. PMID 21722353.

Further reading


This article is issued from Wikipedia - version of the 6/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.