Narrow class group

In algebraic number theory, the narrow class group of a number field K is a refinement of the class group of K that takes into account some information about embeddings of K into the field of real numbers.

Formal definition

Suppose that K is a finite extension of Q. Recall that the ordinary class group of K is defined to be

C_K = I_K / P_K,\,\!

where IK is the group of fractional ideals of K, and PK is the group of principal fractional ideals of K, that is, ideals of the form aOK where a is a unit of K.

The narrow class group is defined to be the quotient

C_K^+ = I_K / P_K^+,

where now PK+ is the group of totally positive principal fractional ideals of K; that is, ideals of the form aOK where a is a unit of K such that σ(a) is positive for every embedding

\sigma : K \to \mathbf R.

Uses

The narrow class group features prominently in the theory of representing of integers by quadratic forms. An example is the following result (Fröhlich and Taylor, Chapter V, Theorem 1.25).

Theorem. Suppose that
K = \mathbf Q(\sqrt d),
where d is a square-free integer, and that the narrow class group of K is trivial. Suppose that
\{ \omega_1, \omega_2 \}\,\!
is a basis for the ring of integers of K. Define a quadratic form
q_K(x,y) = N_{K/\mathbf Q}(\omega_1 x + \omega_2 y),
where NK/Q is the norm. Then a prime number p is of the form
p = q_K(x,y)\,\!
for some integers x and y if and only if either
p \mid d_K\,\!,
or
p = 2 \quad \mbox{and} \quad d_K \equiv 1 \pmod 8,
or
 p > 2 \quad \mbox{and} \quad \left(\frac {d_K} p\right) = 1,
where dK is the discriminant of K, and
\left(\frac ab\right)
indicates the Legendre symbol.

Examples

For example, one can prove that the quadratic fields Q(−1), Q(2), Q(−3) all have trivial narrow class group. Then, by choosing appropriate bases for the integers of each of these fields, the above theorem implies the following:

p = 2 \quad \mbox{or} \quad p \equiv 1 \pmod 4.
(This is known as Fermat's theorem on sums of two squares.)
p = 2 \quad \mbox{or} \quad p \equiv 1, 7 \pmod 8.
p = 3 \quad \mbox{or} \quad p \equiv 1 \pmod 3. (cf. Eisenstein prime)

See also

References

This article is issued from Wikipedia - version of the 3/1/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.