Mass generation

In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because mass is strongly connected to gravitational interaction, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.

There are two types of mass generation models: gravity-free models and models that involve gravity.

Gravity-free models

In these theories, as in the Standard Model itself, the gravitational interaction either is not involved or does not play a crucial role.

Models that involve gravity

See also

References

  1. Steven Weinberg (1976), "Implications of dynamical symmetry breaking", Physical Review, D13 (4): 974–996, Bibcode:1976PhRvD..13..974W, doi:10.1103/PhysRevD.13.974.
    S. Weinberg (1979), "Implications of dynamical symmetry breaking: An addendum", Physical Review, D19 (4): 1277–1280, Bibcode:1979PhRvD..19.1277W, doi:10.1103/PhysRevD.19.1277.
  2. Leonard Susskind (1979), "Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory", Physical Review, D20 (10): 2619–2625, Bibcode:1979PhRvD..20.2619S, doi:10.1103/PhysRevD.20.2619.
  3. Abbott, L. F.; Farhi, E. (1981), "Are the Weak Interactions Strong?", Physics Letters B, 101 (1–2): 69, Bibcode:1981PhLB..101...69A, doi:10.1016/0370-2693(81)90492-5
  4. Calmet, X. (2011), "Asymptotically safe weak interactions", Mod. Phys. Lett., A26: 1571–1576, arXiv:1012.5529Freely accessible, Bibcode:2011MPLA...26.1571C, doi:10.1142/S0217732311035900
  5. Calmet, X. (2011), "An Alternative view on the electroweak interactions", Int.J.Mod.Phys., A26: 2855–2864, arXiv:1008.3780Freely accessible, Bibcode:2011IJMPA..26.2855C, doi:10.1142/S0217751X11053699
  6. Codello, A.; Percacci, R. (2008), "Fixed Points of Nonlinear Sigma Models in d>2", Physics Letters B, 672 (3): 280–283, arXiv:0810.0715Freely accessible, Bibcode:2009PhLB..672..280C, doi:10.1016/j.physletb.2009.01.032
  7. "Bifurcations and pattern formation in particle physics: An introductory study". EPL (Europhysics Letters). 82: 11001. Bibcode:2008EL.....8211001G. doi:10.1209/0295-5075/82/11001.
  8. http://www.ejtp.com/articles/ejtpv7i24p219.pdf
  9. http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.3961v2.pdf
  10. http://arxiv.org/PS_cache/arxiv/pdf/0901/0901.3777v2.pdf
  11. Dvali, Gia; Giudice, Gian F.; Gomez, Cesar; Kehagias, Alex (2011). "UV-Completion by Classicalization". arXiv:1010.1415Freely accessible. Bibcode:2011JHEP...08..108D. doi:10.1007/JHEP08(2011)108.
  12. Csaki, C.; Grojean, C.; Pilo, L.; Terning, J. (2004), "Towards a realistic model of Higgsless electroweak symmetry breaking", Physical Review Letters, 92 (10): 101802, arXiv:hep-ph/0308038Freely accessible, Bibcode:2004PhRvL..92j1802C, doi:10.1103/PhysRevLett.92.101802, PMID 15089195
  13. Csaki, C.; Grojean, C.; Murayama, H.; Pilo, L.; Terning, John (2004), "Gauge theories on an interval: Unitarity without a Higgs", Physical Review D, 69 (5): 055006, arXiv:hep-ph/0305237Freely accessible, Bibcode:2004PhRvD..69e5006C, doi:10.1103/PhysRevD.69.055006
  14. Calmet, X.; Deshpande, N. G.; He, X. G.; Hsu, S. D. H. (2008), "Invisible Higgs boson, continuous mass fields and unHiggs mechanism", Physical Review D, 79 (5): 055021, arXiv:0810.2155Freely accessible, Bibcode:2009PhRvD..79e5021C, doi:10.1103/PhysRevD.79.055021
  15. Pawlowski, M.; Raczka, R. (1994), "A Unified Conformal Model for Fundamental Interactions without Dynamical Higgs Field", Foundations of Physics, 24 (9): 1305–1327, arXiv:hep-th/9407137Freely accessible, Bibcode:1994FoPh...24.1305P, doi:10.1007/BF02148570
  16. Bilson-Thompson, Sundance O.; Markopoulou, Fotini; Smolin, Lee (2007), "Quantum gravity and the standard model", Class. Quantum Grav., 24 (16): 3975–3993, arXiv:hep-th/0603022Freely accessible, Bibcode:2007CQGra..24.3975B, doi:10.1088/0264-9381/24/16/002.
  17. A. V. Avdeenkov and K. G. Zloshchastiev, Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent, J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 195303. ArXiv:1108.0847.
  18. K. G. Zloshchastiev, Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory, Acta Phys. Polon. B 42 (2011) 261-292 ArXiv:0912.4139.
  19. V. Dzhunushaliev and K.G. Zloshchastiev (2012). Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation. ArXiv:1204.6380.
This article is issued from Wikipedia - version of the 8/20/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.