Polyconvex function
In mathematics, the notion of polyconvexity is a generalization of the notion of convexity for functions defined on spaces of matrices. Let Mm×n(K) denote the space of all m × n matrices over the field K, which may be either the real numbers R, or the complex numbers C. A function f : Mm×n(K) → R ∪ {±∞} is said to be polyconvex if
can be written as a convex function of the p × p subdeterminants of A, for 1 ≤ p ≤ min{m, n}.
Polyconvexity is a weaker property than convexity. For example, the function f given by
is polyconvex but not convex.
References
- Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 353. ISBN 0-387-00444-0. (Definition 10.25)
This article is issued from Wikipedia - version of the 6/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.