Scanning probe lithography

Scanning probe lithography[1] (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm.[2] It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.[3]

Classification

The different approaches towards SPL can be classified by their goal to either add or remove material, by the general nature of the process either chemical or physical, or according to the driving mechanisms of the probe-surface interaction used in the patterning process: mechanical, thermal, diffusive and electrical.

Overview

Mechanical/thermo-mechanical

Mechanical scanning probe lithography (m-SPL) is a nanomachining or nano-scratching[4] top-down approach without the application of heat.[5] Thermo-mechanical SPL applies heat together with a mechanical force, e.g. indenting of polymers in the Millipede memory.

Thermal

Thermal scanning probe lithography (t-SPL) uses a heatable scanning probe in order to efficiently remove material from a surface without the application of significant mechanical forces. The patterning depth can be controlled to create high-resolution 3D structures.[6][7]

Thermo-Chemical

Thermochemical scanning probe lithography (tc-SPL) or thermochemical nanolithography (TCNL) employs the scanning probe tips to induce thermally activated chemical reactions to change the chemical functionality or the phase of surfaces. Such thermally activated reactions have been shown in proteins,[8] organic semiconductors,[9] electroluminescent conjugated polymers,[10] and nanoribbon resistors.[11] Furthermore, deprotection of functional groups[12] (sometimes involving a temperature gradients[13]), reduction of oxides,[14] and the crystallization of piezoelectric/ferroelectric ceramics[15] has been demonstrated.

Dip-pen/thermal dip-pen

Dip-pen scanning probe lithography (dp-SPL) or dip-pen nanolithography (DPN) is a scanning probe lithography technique based on diffusion, where the tip is employed to create patterns on a range of substances by deposition of a variety of liquid inks.[16][17][18] Thermal dip-pen scanning probe lithography or thermal dip-pen nanolithography (TDPN) extends the usable inks to solids, which can be deposited in their liquid form when the probes are pre-heated.[19][20][21]

Oxidation

Oxidation scanning probe lithography (o-SPL), also called local oxidation nanolithography (LON), scanning probe oxidation, nano-oxidation, local anodic oxidation, AFM oxidation lithography is based on the spatial confinement of an oxidation reaction.[22][23]

Bias induced

Bias-induced scanning probe lithography (b-SPL) uses the high electrical fields created at the apex of a probe tip when voltages are applied between tip and sample to facilitate and confining a variety of chemical reactions to decompose gases[24] or liquids[2][25] in order to locally deposit and grow materials on surfaces.

Current induced

In Current induced scanning probe lithography (c-SPL) in addition to the high electrical fields of b-SPL, also a focused electron current which emanates from the SPM tip is used to create nanopatterns, e.g. in polymers[26] and molecular glasses.[27]

Comparison to other lithographic techniques

Being a serial technology, SPL is inherently slower than e.g. photolithography or nanoimprint lithography, while parallelization as required for mass-fabrication is considered a large systems engineering effort (see also Millipede memory). As for resolution, SPL methods bypass the optical diffraction limit due to their use of scanning probes compared with photolithographic methods. Some probes have integrated in-situ metrology capabilities, allowing for feedback control during the write process.[28] SPL works under ambient atmospheric conditions, without the need for ultra high vacuum (UHV), unlike e-beam or EUV lithography.

References

  1. Garcia, Ricardo; Knoll, Armin W.; Riedo, Elisa (August 2014). "Advanced scanning probe lithography". Nature Nanotechnology. 9 (8): 577–587. arXiv:1505.01260Freely accessible. Bibcode:2014NatNa...9..577G. doi:10.1038/nnano.2014.157. ISSN 1748-3387. PMID 25091447. Retrieved 2015-05-12.
  2. 1 2 Martínez, R. V.; Losilla, N. S.; Martinez, J.; Huttel, Y.; Garcia, R. (July 1, 2007). "Patterning Polymeric Structures with 2 nm Resolution at 3 nm Half Pitch in Ambient Conditions". Nano Letters. 7 (7): 1846–1850. Bibcode:2007NanoL...7.1846M. doi:10.1021/nl070328r. ISSN 1530-6984. Retrieved 2015-05-07.
  3. U.S. Patent 4,785,189
  4. "Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy - Yan - 2010 - Small - Wiley Online Library". Small. 6: 724–728. doi:10.1002/smll.200901947. Retrieved 2015-05-08.
  5. Chen, Hsiang-An; Lin, Hsin-Yu; Lin, Heh-Nan (June 17, 2010). "Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires". The Journal of Physical Chemistry C. 114 (23): 10359–10364. doi:10.1021/jp1014725. ISSN 1932-7447. Retrieved 2015-05-07.
  6. Hua, Yueming; Saxena, Shubham; Lee, Jung C.; King, William P.; Henderson, Clifford L. (2007). "Direct three-dimensional nanoscale thermal lithography at high speeds using heated atomic-force microscope cantilevers". Emerging Lithographic Technologies XI. 6517: 65171L–65171L–6. doi:10.1117/12.713374. Retrieved 2015-05-06.
  7. Pires, David; Hedrick, James L.; Silva, Anuja De; Frommer, Jane; Gotsmann, Bernd; Wolf, Heiko; Despont, Michel; Duerig, Urs; Knoll, Armin W. (2010). "Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes". Science. 328 (5979): 732–735. Bibcode:2010Sci...328..732P. doi:10.1126/science.1187851. ISSN 0036-8075. PMID 20413457. Retrieved 2015-05-06.
  8. "Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles - Martínez - 2009 - Advanced Materials - Wiley Online Library". Advanced Materials. 22: 588–591. doi:10.1002/adma.200902568. Retrieved 2015-05-07.
  9. Fenwick, Oliver; Bozec, Laurent; Credgington, Dan; Hammiche, Azzedine; Lazzerini, Giovanni Mattia; Silberberg, Yaron R.; Cacialli, Franco (October 2009). "Thermochemical nanopatterning of organic semiconductors". Nature Nanotechnology. 4 (10): 664–668. Bibcode:2009NatNa...4..664F. doi:10.1038/nnano.2009.254. ISSN 1748-3387. PMID 19809458. Retrieved 2015-05-06.
  10. Wang, Debin; Kim, Suenne; Ii, William D. Underwood; Giordano, Anthony J.; Henderson, Clifford L.; Dai, Zhenting; King, William P.; Marder, Seth R.; Riedo, Elisa (2009-12-07). "Direct writing and characterization of poly(p-phenylene vinylene) nanostructures". Applied Physics Letters. 95 (23): 233108. Bibcode:2009ApPhL..95w3108W. doi:10.1063/1.3271178. ISSN 0003-6951. Retrieved 2015-05-06.
  11. "On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography - Shaw - 2012 - Advanced Materials - Wiley Online Library". Advanced Materials. 25: 552–558. doi:10.1002/adma.201202877. Retrieved 2015-05-07.
  12. "Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects - Wang - 2009 - Advanced Functional Materials - Wiley Online Library". Advanced Functional Materials. 19: 3696–3702. doi:10.1002/adfm.200901057. Retrieved 2015-05-06.
  13. Carroll, Keith M.; Giordano, Anthony J.; Wang, Debin; Kodali, Vamsi K.; Scrimgeour, Jan; King, William P.; Marder, Seth R.; Riedo, Elisa; Curtis, Jennifer E. (July 9, 2013). "Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography". Langmuir. 29 (27): 8675–8682. doi:10.1021/la400996w. ISSN 0743-7463. Retrieved 2015-05-06.
  14. Wei, Zhongqing; Wang, Debin; Kim, Suenne; Kim, Soo-Young; Hu, Yike; Yakes, Michael K.; Laracuente, Arnaldo R.; Dai, Zhenting; Marder, Seth R. (06/11/2010). "Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics". Science. 328 (5984): 1373–1376. Bibcode:2010Sci...328.1373W. doi:10.1126/science.1188119. ISSN 0036-8075. PMID 20538944. Retrieved 2015-05-06. Check date values in: |date= (help)
  15. "Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates - Kim - 2011 - Advanced Materials - Wiley Online Library". Advanced Materials. doi:10.1002/adma.201101991. Retrieved 2015-05-07.
  16. Jaschke, Manfred; Butt, Hans-Juergen (April 1, 1995). "Deposition of Organic Material by the Tip of a Scanning Force Microscope". Langmuir. 11 (4): 1061–1064. doi:10.1021/la00004a004. ISSN 0743-7463. Retrieved 2015-05-11.
  17. "The Evolution of Dip-Pen Nanolithography - Ginger - 2003 - Angewandte Chemie International Edition - Wiley Online Library". Angewandte Chemie International Edition. 43: 30–45. doi:10.1002/anie.200300608. Retrieved 2015-05-07.
  18. Piner, Richard D.; Zhu, Jin; Xu, Feng; Hong, Seunghun; Mirkin, Chad A. (1999-01-29). ""Dip-Pen" Nanolithography". Science. 283 (5402): 661–663. doi:10.1126/science.283.5402.661. ISSN 0036-8075. PMID 9924019. Retrieved 2015-05-08.
  19. Nelson, B. A.; King, W. P.; Laracuente, A. R.; Sheehan, P. E.; Whitman, L. J. (2006-01-16). "Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography". Applied Physics Letters. 88 (3): 033104. Bibcode:2006ApPhL..88c3104N. doi:10.1063/1.2164394. ISSN 0003-6951. Retrieved 2015-05-06.
  20. Lee, Woo-Kyung; Robinson, Jeremy T.; Gunlycke, Daniel; Stine, Rory R.; Tamanaha, Cy R.; King, William P.; Sheehan, Paul E. (December 14, 2011). "Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks". Nano Letters. 11 (12): 5461–5464. doi:10.1021/nl203225w. ISSN 1530-6984. Retrieved 2015-05-06.
  21. Lee, Woo Kyung; Dai, Zhenting; King, William P.; Sheehan, Paul E. (January 13, 2010). "Maskless Nanoscale Writing of Nanoparticle−Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes". Nano Letters. 10 (1): 129–133. Bibcode:2010NanoL..10..129L. doi:10.1021/nl9030456. ISSN 1530-6984. Retrieved 2015-05-06.
  22. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. (1990-05-14). "Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air". Applied Physics Letters. 56 (20): 2001–2003. Bibcode:1990ApPhL..56.2001D. doi:10.1063/1.102999. ISSN 0003-6951. Retrieved 2015-05-08.
  23. "Nano-chemistry and scanning probe nanolithographies - Chemical Society Reviews (RSC Publishing)". xlink.rsc.org. Retrieved 2015-05-08.
  24. Garcia, R.; Losilla, N. S.; Martínez, J.; Martinez, R. V.; Palomares, F. J.; Huttel, Y.; Calvaresi, M.; Zerbetto, F. (2010-04-05). "Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope". Applied Physics Letters. 96 (14): 143110. Bibcode:2010ApPhL..96n3110G. doi:10.1063/1.3374885. ISSN 0003-6951. Retrieved 2015-05-08.
  25. Suez, Itai; et al. (2007). "High‐Field Scanning Probe Lithography in Hexadecane: Transitioning from Field Induced Oxidation to Solvent Decomposition through Surface Modification". Advanced Materials. 19 (21): 3570–3573. doi:10.1002/adma.200700716.
  26. Lyuksyutov, Sergei F.; Vaia, Richard A.; Paramonov, Pavel B.; Juhl, Shane; Waterhouse, Lynn; Ralich, Robert M.; Sigalov, Grigori; Sancaktar, Erol (July 2003). "Electrostatic nanolithography in polymers using atomic force microscopy". Nature Materials. 2 (7): 468–472. Bibcode:2003NatMa...2..468L. doi:10.1038/nmat926. ISSN 1476-1122. Retrieved 2015-05-08.
  27. "SPIE | Journal of Micro/Nanolithography, MEMS, and MOEMS | Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography". nanolithography.spiedigitallibrary.org. 12: 031111. doi:10.1117/1.JMM.12.3.031111. Retrieved 2015-05-08.
  28. Scanning probe nanolithography system and method (EP2848997 A1)
This article is issued from Wikipedia - version of the 5/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.