Timeline of computational physics
Timeline of computational physics
1930s
- John Vincent Atanasoff and Clifford Berry create the first electronic non-programmable, digital computing device, the Atanasoff–Berry Computer, from 1937 to 1942.
1940s
- Nuclear bomb and ballistics simulations at Los Alamos and BRL, respectively.[1]
- Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[2][3][4]
- First hydro simulations at Los Alamos occurred.[5][6]
- Ulam and von Neumann introduce the notion of cellular automata.[7]
1950s
- Equations of State Calculations by Fast Computing Machines introduces the Metropolis–Hastings algorithm.[8] Also, important earlier independent work by Alder and S. Frankel.[9][10]
- Fermi, Ulam and Pasta with help from Mary Tsingou, discover the Fermi–Pasta–Ulam problem.[11]
- Molecular dynamics invented by Alder and Wainwright[12]
1960s
- Molecular dynamics was invented independently by Aneesur Rahman.[13]
- Kruskal and Zabusky follow up the Fermi–Pasta–Ulam problem with further numerical experiments, and coin the term "soliton".[14][15]
- Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.[16]
- W Kohn instigates the development of density functional theory (with LJ Sham and P Hohenberg),[17][18] for which he shares the Nobel Chemistry Prize (1998).[19] This contribution is arguably the first Nobel given for a computer programme or computational technique.
- Frenchman Verlet (re)discovers a numerical integration algorithm,[20] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[21] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.[20]
1970s
- Veltman's calculations at CERN lead him and t'Hooft to valuable insights into renormalizability of electroweak theory.[22] The computation has been cited as a key reason to the award of the Nobel prize to both.[23]
- Hardy, Pomeau and de Pazzis introduced the first lattice gas model, abbreviated as the HPP model after its authors.[24][25] These later evolve into lattice Boltzmann models.
- Wilson shows that continuum QCD is recovered for an infinitely large lattice with its sites infinitesimally close to one another, thereby beginning lattice QCD.[26]
1980s
- Italian physicists Car and Parrinello invent the Car–Parrinello method.[27]
- Fast multipole method invented by Rokhlin and Greengard (voted one of the top 10 algorithms of the 20th century).[28][29][30]
See also
- Timeline of scientific computing
- Computational physics
- Important publications in computational physics
References
- ↑ Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
- ↑ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
- ↑ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
- ↑ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
- ↑ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
- ↑ A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
- ↑ Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
- ↑ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
- ↑ Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
- ↑ http://www.hp9825.com/html/stan_frankel.html
- ↑ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
- ↑ Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
- ↑ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
- ↑ Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
- ↑ http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.
- ↑ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- ↑ Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
- ↑ Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.136.B864.
- ↑ "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
- 1 2 Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159: 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
- ↑ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
- ↑ Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
- ↑ Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
- ↑ J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
- ↑ J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physics Review A, 13:1949–1961.
- ↑ Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
- ↑ Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
- ↑ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
- ↑ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
- ↑ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
External links
This article is issued from Wikipedia - version of the 11/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.