XPNPEP1

XPNPEP1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases XPNPEP1, APP1, SAMP, XPNPEP, XPNPEPL, XPNPEPL1, X-prolyl aminopeptidase (aminopeptidase P) 1, soluble
External IDs MGI: 2180003 HomoloGene: 6424 GeneCards: XPNPEP1
RNA expression pattern


More reference expression data
Orthologs
Species Human Mouse
Entrez

7511

170750

Ensembl

ENSG00000108039

ENSMUSG00000025027

UniProt

Q9NQW7

Q6P1B1

RefSeq (mRNA)

NM_133216

RefSeq (protein)

NP_001161076.1
NP_065116.3
NP_001311061.1

NP_573479.3

Location (UCSC) Chr 10: 109.86 – 109.92 Mb Chr 19: 52.94 – 53.04 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

Xaa-Pro aminopeptidase 1 is an enzyme that in humans is encoded by the XPNPEP1 gene.[3]

Function

X-prolyl aminopeptidase (EC 3.4.11.9) is a proline-specific metalloaminopeptidase that specifically catalyzes the removal of any unsubstituted N-terminal amino acid that is adjacent to a penultimate proline residue. Because of its specificity toward proline, it has been suggested that X-prolyl aminopeptidase is important in the maturation and degradation of peptide hormones, neuropeptides, and tachykinins, as well as in the digestion of otherwise resistant dietary protein fragments, thereby complementing the pancreatic peptidases. Deficiency of X-prolyl aminopeptidase results in excretion of large amounts of imino-oligopeptides in urine (Blau et al., 1988).[supplied by OMIM][3]

Model organisms

Model organisms have been used in the study of XPNPEP1 function. A conditional knockout mouse line called Xpnpep1tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10] - in-depth bone and cartilage phenotyping[11]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. 1 2 "Entrez Gene: XPNPEP1 X-prolyl aminopeptidase (aminopeptidase P) 1, soluble".
  4. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  5. 1 2 "International Mouse Phenotyping Consortium".
  6. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  7. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  8. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  9. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207Freely accessible. PMID 23870131.
  10. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".
  11. 1 2 "OBCD Consortium".

Further reading

  • Vanhoof G, De Meester I, Goossens F, Hendriks D, Scharpé S, Yaron A (Aug 1992). "Kininase activity in human platelets: cleavage of the Arg1-Pro2 bond of bradykinin by aminopeptidase P". Biochemical Pharmacology. 44 (3): 479–87. doi:10.1016/0006-2952(92)90439-P. PMID 1510698. 
  • Blau N, Niederwieser A, Shmerling DH (1988). "Peptiduria presumably caused by aminopeptidase-P deficiency. A new inborn error of metabolism". Journal of Inherited Metabolic Disease. 11 Suppl 2: 240–2. doi:10.1007/BF01804246. PMID 3141711. 
  • Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1-2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1-2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149. 
  • Vanhoof G, Goossens F, Juliano MA, Juliano L, Hendriks D, Schatteman K, Lin AH, Scharpé S (1998). "Isolation and sequence analysis of a human cDNA clone (XPNPEPL) homologous to X-prolyl aminopeptidase (aminopeptidase P)". Cytogenetics and Cell Genetics. 78 (3-4): 275–80. doi:10.1159/000134671. PMID 9465902. 
  • Sprinkle TJ, Caldwell C, Ryan JW (Jun 2000). "Cloning, chromosomal sublocalization of the human soluble aminopeptidase P gene (XPNPEP1) to 10q25.3 and conservation of the putative proton shuttle and metal ligand binding sites with XPNPEP2". Archives of Biochemistry and Biophysics. 378 (1): 51–6. doi:10.1006/abbi.2000.1792. PMID 10871044. 
  • Cottrell GS, Hooper NM, Turner AJ (Dec 2000). "Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese(II)-dependent enzyme". Biochemistry. 39 (49): 15121–8. doi:10.1021/bi001585c. PMID 11106490. 
  • Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (May 2003). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nature Biotechnology. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801. 


This article is issued from Wikipedia - version of the 5/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.