100000000 (number)
"100 million" redirects here. For the song by Birdman, see 100 Million.
100000000 | |
---|---|
Cardinal | One hundred million |
Ordinal |
100000000th (one hundred millionth) |
Factorization | 28 × 58 |
Roman numeral | C |
Binary | 1011111010111100001000000002 |
Ternary | 202220111120122013 |
Quaternary | 113311320100004 |
Quinary | 2011000000005 |
Senary | 135312025446 |
Octal | 5753604008 |
Duodecimal | 295A645412 |
Hexadecimal | 5F5E10016 |
Vigesimal | 1B5000020 |
Base 36 | 1NJCHS36 |
One hundred million (100,000,000) is the natural number following 99,999,999 and preceding 100,000,001.
In scientific notation, it is written as 108.
East Asian languages treat 100,000,000 as a counting unit, significant as the square of a myriad, also a counting unit. In Chinese, Japanese, and Korean respectively it is yì (億) (or wànwàn 萬萬 in ancient texts), oku (億), and eok (억/億). These languages do not have single words for a thousand to the second, third, fifth power, etc.
Selected 9-digit numbers (100,000,001–999,999,999)
- 102334155 – Fibonacci number
- 107890609 – Wedderburn-Etherington number[1]
- 111111111 – repunit, square root of 12345678987654321
- 111111113 – Chen prime, Sophie Germain prime, cousin prime.
- 123456789 – smallest zeroless base 10 pandigital number
- 129140163 = 317
- 129644790 – Catalan number[2]
- 134217728 = 227
- 139854276 – the smallest pandigital square
- 142547559 – Motzkin number[3]
- 165580141 – Fibonacci number
- 179424673 – 10000000th prime number
- 190899322 – Bell number[4]
- 214358881 = 118
- 222222222 – repdigit
- 222222227 – safe prime
- 225058681 – Pell number[5]
- 225331713 – self-descriptive number in base 9
- 244140625 = 512
- 253450711 – Wedderburn-Etherington number[1]
- 267914296 – Fibonacci number
- 268402687 – Carol number[6]
- 268435456 = 228
- 268468223 – Kynea number[7]
- 272400600 – the number of terms of the harmonic series required to pass 20
- 275305224 – the number of magic squares of order 5, excluding rotations and reflections
- 282475249 = 710
- 333333333 – repdigit
- 367567200 – colossally abundant number,[8] superior highly composite number[9]
- 381654729 – the only polydivisible number that is also a zeroless pandigital number
- 387420489 = 318, 99 and in tetration notation 29
- 400763223 – Motzkin number[3]
- 433494437 – Fibonacci number
- 442386619 – alternating factorial[10]
- 444444444 – repdigit
- 477638700 – Catalan number[2]
- 479001599 – factorial prime[11]
- 479001600 = 12!
- 536870912 = 229
- 543339720 – Pell number[5]
- 554999445 – 9-digit analogue to Kaprekar constant
- 555555555 – repdigit
- 596572387 – Wedderburn-Etherington number[1]
- 666666666 – repdigit
- 701408733 – Fibonacci number
- 715827883 – Wagstaff prime[12]
- 777777777 – repdigit
- 815730721 = 138
- 888888888 – repdigit
- 906150257 – smallest counterexample to the Polya conjecture
- 987654321 – largest zeroless pandigital number
- 999999937 – largest 9-digit prime
- 999999999 – repdigit
See also
References
- 1 2 3 "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- 1 2 "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- 1 2 "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- 1 2 "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A093112 : a(n) = (2^n-1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
- ↑ "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
This article is issued from Wikipedia - version of the 11/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.