Hall–Petresco identity
In mathematics, the Hall–Petresco identity (sometimes misspelled Hall–Petrescu identity) is an identity holding in any group. It was introduced by Hall (1934) and Petresco (1954). It can be proved using the commutator collecting process, and implies that p-groups of small class are regular.
Statement
The Hall–Petresco identity states that if x and y are elements of a group G and m is a positive integer then
where each ci is in the subgroup Ki of the descending central series of G.
References
- Hall, Marshall (1959), The theory of groups, Macmillan, MR 0103215
- Hall, Philip (1934), "A contribution to the theory of groups of prime-power order", Proceedings of the London Mathematical Society, 36: 29–95, doi:10.1112/plms/s2-36.1.29
- Huppert, B. (1967), Endliche Gruppen (in German), Berlin, New York: Springer-Verlag, pp. 90–93, ISBN 978-3-540-03825-2, MR 0224703, OCLC 527050
- Petresco, Julian (1954), "Sur les commutateurs", Mathematische Zeitschrift, 61 (1): 348–356, doi:10.1007/BF01181351, MR 0066380
This article is issued from Wikipedia - version of the 3/29/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.