Manganese(II,III) oxide
Names | |
---|---|
IUPAC name
manganese(II) dimanganese(III) oxide | |
Other names
Manganese tetroxide; Manganese oxide, Manganomanganic oxide, Trimanganese tetraoxide, Trimanganese tetroxide[1] | |
Identifiers | |
1317-35-7 | |
ECHA InfoCard | 100.013.879 |
PubChem | 14825 |
RTECS number | OP0895000 |
Properties | |
Mn3O4 MnO.Mn2O3 | |
Molar mass | 228.812 g/mol |
Appearance | brownish-black powder[1] |
Density | 4.86 g/cm3 |
Melting point | 1,567 °C (2,853 °F; 1,840 K) |
Boiling point | 2,847 °C (5,157 °F; 3,120 K) |
insoluble | |
Solubility | soluble in HCl |
Hazards | |
US health exposure limits (NIOSH): | |
PEL (Permissible) |
C 5 mg/m3[1] |
REL (Recommended) |
None established[1] |
IDLH (Immediate danger) |
N.D.[1] |
Thermochemistry | |
Std molar entropy (S |
149 J·mol−1·K−1[2] |
Std enthalpy of formation (ΔfH |
−1387 kJ·mol−1[2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Manganese(II,III) oxide is the chemical compound with formula Mn3O4. Manganese is present in two oxidation states +2 and +3 and the formula is sometimes written as MnO.Mn2O3. Mn3O4 is found in nature as the mineral hausmannite.
Preparation
Mn3O4 formed when any manganese oxide is heated in air above 1000 °C.[3] Considerable research has centred on producing nano-crystalline Mn3O4 and various syntheses that involve oxidation of MnII or reduction of MnVI.[4][5][6]
Reactions
Mn3O4 has been found to act as a catalyst for a range of reactions e.g. the oxidation of methane and carbon monoxide;[7][8] the decomposition of NO,[9] the reduction of nitrobenzene[10] and the catalytic combustion of organic compounds.[11]
Structure
Mn3O4 has the spinel structure, where the oxide ions are cubic close packed and the MnII occupy tetrahedral sites and the MnIII octahedral sites.[3] The structure is distorted due to a Jahn-Teller effect.[3] At room temperature Mn3O4 is paramagnetic, below 41-43 K, it is ferrimagnetic[12] although this has been reported as reducing in nano-crystalline samples to around 39 K.[13]
Uses
Mn3O4 is sometimes used as a starting material in the production of soft ferrites e.g. manganese zinc ferrite,[14] and lithium manganese oxide, used in lithium batteries.[15]
Manganese tetraoxide can also be used as a weighting agent while drilling reservoir sections in oil and gas wells.
References
- 1 2 3 4 5 "NIOSH Pocket Guide to Chemical Hazards #0381". National Institute for Occupational Safety and Health (NIOSH).
- 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 0-618-94690-X.
- 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.
- ↑ Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties Jin Du et al. Nanotechnology, (2006),17 4923-4928, doi: 10.1088/0957-4484/17/19/024
- ↑ One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic study Vázquez-Olmos A., Redón R, Rodríguez-Gattorno G., Mata-Zamora M.E., Morales-Leal F, Fernández-Osorio A.L, Saniger J.M. Journal of Colloid and Interface Science, 291, 1, (2005), 175-180 doi:10.1016/j.jcis.2005.05.005
- ↑ Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres Xiaoming Sun, Junfeng Liu, Yadong Li, Chemistry - A European Journal,(2005), 12, 7, 2039 – 2047, doi:10.1002/chem.200500660
- ↑ The reduction and oxidation behaviour of manganese oxides Stobhe E.R, de Boer A.D., Geus J.W., Catalysis Today. (1999), 47, 161–167. doi:10.1016/S0920-5861(98)00296-X
- ↑ An in situ XRD investigation of singly and doubly promoted manganese oxide methane coupling catalysts.Moggridge G.D, Rayment T, Lambert R.M. Journal of Catalysis, (1992), 134, 242–252, doi:10.1016/0021-9517(92)90225-7
- ↑ NO Decomposition over Mn2O3 and Mn3O4. Yamashita T, Vannice A., Journal of Catalysis (1996),163, 158–168, doi:10.1006/jcat.1996.0315
- ↑ Selective reduction of nitrobenzene to nitrosobenzene over different kinds of trimanganese tetroxide catalysts.Wang W.M., Yang Y.N., Zhang J.Y., Applied Catalysis A. (1995), 133, 1, 81–93 doi:10.1016/0926-860X(95)00186-7
- ↑ Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Baldi M, Finocchio E, Milella F, Busca G., Applied Catalysis B. (1998), 16, 1, 43–51, doi:10.1016/S0926-3373(97)00061-1
- ↑ Magnetic Structure of Mn3O4 by Neutron Diffraction Boucher B., Buhl R., Perrin M., J. Appl. Phys. 42, 1615 (1971); doi:10.1063/1.1660364
- ↑ Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation I.K. Gopalakrishnan, N. Bagkar, R. Ganguly and S.K. Kulshreshtha Journal of Crystal Growth 280, 3-4, (2005), 436-441, doi:10.1016/j.jcrysgro.2005.03.060
- ↑ Method of making manganese-zinc ferrite U.S Patent number: 4093688 (1978) Arthur Withop, Roger Emil Travagli
- ↑ Process for preparing lithium manganese oxides,U.S Patent number: 6706443,(2004), Horst Krampitz, Gerhard Wohner