Silver molybdate
Identifiers | |
---|---|
13765-74-4 | |
3D model (Jmol) | Interactive image |
ChemSpider | 10801079 |
PubChem | 16217378 |
| |
| |
Properties | |
Ag2MoO4 | |
Molar mass | 375.67 g/mol |
Appearance | yellow crystals |
Density | 6.18 g/cm3, solid |
Melting point | 483 °C (901 °F; 756 K) |
slightly soluble | |
Structure | |
cubic | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Silver molybdate (Ag2MoO4) presents two types of electronic structure, depending on the pressure conditions to which the crystal is subjected.[1] At room temperature, Ag2MoO4 exhibits a spinel-type cubic structure related to beta (β-Ag2MoO4) phase, which is more stable in nature. However, when exposed to high hydrostatic pressure, these crystals have a tetragonal structure associated to alpha (α-Ag2MoO4) metastable phase.[2] Recently, the literature [3] has reported the formation of α-Ag2MoO4 metastable phase by the solution-phase precipitation method under environment condition, and using 3-bis(2-pyridyl)pyrazine (dpp) as doping. The influence of pH at starting solution on the growth and formation processes of distinct heterostructures (brooms, flowers and rods) was investigated by Singh et al.[4] and Fodjo et al.,[5] in which the sodium borohydride was employed to induce the reduction of silver nanoparticles on the surface of Ag2MoO4 crystals in order to enhance the Raman scattering. In other studies, Ag-Ag2MoO4 composites prepared by microwave-assisted hydrothermal synthesis presented interesting photocatalytic activity for the degradation of Rhodamine B under visible light.[6] In addition, Ag2MoO4 mixed with graphite acts as a good lubricant for Ni-based composites, improving the tribological properties of this system.[7] Different synthesis methods have been employed to obtain pure β-Ag2MoO4 crystals, including solid-state reaction or oxide mixture at high temperature,[8] melt-quenching [9] and Czochralski growth.[10] Particularly, high temperatures, long processing times, and/or sophisticated equipment are necessary in these synthetic routes. Moreover, the final products may be composed of irregular particle shapes with nonhomogeneous size distribution as well as contain the presence of secondary phases. In recent years, pure β-Ag2MoO4 crystals have been synthesized by the co-precipitation,[11] microwave-assisted hydrothermal synthesis,[11][12] dynamic template route using polymerization of the acrylamide assisted templates [13] and impregnation/calcination method.[14]
Recently, the literature have reported the formation of β-Ag2MoO4 crystals using different chemical solvents in the reaction medium. These β-Ag2MoO4 microcrystals were synthesized by the precipitation method, employing several polar solvents: deionized water (H2O), methanol (CH4O), ethanol (C2H6O), 1-propanol (C3H8O) and 1-butanol (C4H10O) at 60oC for 8 h. X-ray diffraction (XRD), Rietveld refinements and field emission scanning electron microscopy (FESEM) were employed in structural and morphological characterizations.[15]
A schematic representation of a β-Ag2MoO4 structure modeled by means of Rietveld refinement data is illustrated below:
References
- ↑ Arora, A. K.; Nithya, R.; Misra, Sunasira; Yagi, Takehiko (2012-12-01). "Behavior of silver molybdate at high-pressure". Journal of Solid State Chemistry. 196: 391–397. doi:10.1016/j.jssc.2012.07.003.
- ↑ Beltrán, Armando; Gracia, Lourdes; Longo, Elson; Andrés, Juan (2014-02-20). "First-Principles Study of Pressure-Induced Phase Transitions and Electronic Properties of Ag2MoO4". The Journal of Physical Chemistry C. 118 (7): 3724–3732. doi:10.1021/jp4118024. ISSN 1932-7447.
- ↑ Ng, Choon Hwee Bernard; Fan, Wai Yip (2015-06-03). "Uncovering Metastable α-Ag2MoO4 Phase Under Ambient Conditions. Overcoming High Pressures by 2,3-Bis(2-pyridyl)pyrazine Doping". Crystal Growth & Design. 15 (6): 3032–3037. doi:10.1021/acs.cgd.5b00455. ISSN 1528-7483.
- ↑ Singh, D. P.; Sirota, B.; Talpatra, S.; Kohli, P.; Rebholz, C.; Aouadi, S. M. (2012-03-09). "Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly". Journal of Nanoparticle Research. 14 (4): 1–11. doi:10.1007/s11051-012-0781-0. ISSN 1388-0764.
- ↑ Fodjo, Essy Kouadio; Li, Da-Wei; Marius, Niamien Paulin; Albert, Trokourey; Long, Yi-Tao. "Low temperature synthesis and SERS application of silver molybdenum oxides". Journal of Materials Chemistry A. 1 (7). doi:10.1039/c2ta01018f.
- ↑ Li, ZhaoQian; Chen, XueTai; Xue, Zi-Ling (2013-02-22). "Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity". Science China Chemistry. 56 (4): 443–450. doi:10.1007/s11426-013-4845-5. ISSN 1674-7291.
- ↑ Liu, Eryong; Gao, Yimin; Jia, Junhong; Bai, Yaping (2013-03-24). "Friction and Wear Behaviors of Ni-based Composites Containing Graphite/Ag2MoO4 Lubricants". Tribology Letters. 50 (3): 313–322. doi:10.1007/s11249-013-0131-0. ISSN 1023-8883.
- ↑ Suthanthiraraj, S. Austin; Premchand, Y. Daniel (2004-05-01). "Molecular structural analysis of 55mol% CuI-45mol% Ag2MoO4 solid electrolyte using XPS and laser raman techniques". Ionics. 10 (3-4): 254–257. doi:10.1007/BF02382825. ISSN 0947-7047.
- ↑ Rocca, F; Kuzmin, A; Mustarelli, P; Tomasi, C; Magistris, A (1999-06-01). "XANES and EXAFS at Mo K-edge in (AgI)1−x(Ag2MoO4)x glasses and crystals". Solid State Ionics. 121 (1–4): 189–192. doi:10.1016/S0167-2738(98)00546-3.
- ↑ Brown, Stephen; Marshall, Alison; Hirst, Philip (1993-12-20). "The growth of single crystals of lead molybdate by the Czochralski technique". Materials Science and Engineering: A. 173 (1–2): 23–27. doi:10.1016/0921-5093(93)90179-I.
- 1 2 De Santana, Yuri V. B.; Gomes, Jose Ernane Cardoso; Matos, Leandro; Cruvinel, Guilherme Henrique; Perrin, Andre; Perrin, Christiane; Andres, Juan; Varela, Jose A.; Longo, Elson (2014-08-01). "Silver Molybdate and Silver Tungstate Nanocomposites with Enhanced Photoluminescence". Nanomaterials and Nanotechnology. doi:10.5772/58923.
- ↑ Gouveia, A. F.; Sczancoski, J. C.; Ferrer, M. M.; Lima, A. S.; Santos, M. R. M. C.; Li, M. Siu; Santos, R. S.; Longo, E.; Cavalcante, L. S. (2014-06-02). "Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β-Ag2MoO4 Microcrystals". Inorganic Chemistry. 53 (11): 5589–5599. doi:10.1021/ic500335x. ISSN 0020-1669.
- ↑ Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Yang, Xiao-Hong. "Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route". CrystEngComm. 17 (29): 5511–5521. doi:10.1039/c5ce00039d.
- ↑ Zhao, Songjian; Li, Zhen; Qu, Zan; Yan, Naiqiang; Huang, Wenjun; Chen, Wanmiao; Xu, Haomiao (2015-10-15). "Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury". Fuel. 158: 891–897. doi:10.1016/j.fuel.2015.05.034.
- ↑ Cunha, F. S.; Sczancoski, J. C.; Nogueira, I. C.; Oliveira, V. G. de; Lustosa, S. M. C.; Longo, E.; Cavalcante, L. S. "Structural, morphological and optical investigation of β-Ag 2 MoO 4 microcrystals obtained with different polar solvents". CrystEngComm. doi:10.1039/c5ce01662b.