Slack bus

In electrical power systems a slack bus (or swing bus), defined as a Vδ bus, is used to balance the active power |P| and reactive power |Q| in a system while performing load flow studies. The slack bus is used to provide for system losses by emitting or absorbing active and/or reactive power to and from the system.

Load flow studies

For power systems engineers, a load flow study explains the power system conditions at various intervals during operation.

The use of a slack bus has an inherent disadvantage when dealing with uncertain input variables: the slack bus must absorb all uncertainties arising from the system and thus must have the widest possible nodal power distributions. Even moderate amounts of uncertainty in a large system may allow the resulting distributions to contain values beyond the slack bus's margins.

A load flow approach able to directly incorporate uncertainties into the solution processes can be very useful. The results from such analyses give solutions over the range of the uncertainties, i.e., solutions that are sets of values or regions instead of single values.

Load buses

Load buses are of 3 types and are classified as:

  1. PQ bus – the real power |P| and reactive power |Q| are specified. It is also known as Load Bus.
  2. PV bus – the real power |P| and the voltage magnitude |V| are specified. It is also known as Generator Bus.
  3. Slack bus – to balance the active and reactive power in the system. It is also known as the Reference Bus or the Swing Bus.

The slack bus provides or absorbs active and reactive power to and from the transmission line to provide for losses, since these variables are unknown until the final solution is established. The slack bus is the only bus for which the system reference phase angle is defined. From this, the various angular differences can be calculated in the power flow equations. If a slack bus is not specified, then a generator bus with maximum real power |P| acts as the slack bus. A given scheme can involve more than one slack bus.

Formulation of load flow problem

The most common formulation of the load flow problem specifies all input variables (PQ at loads, PV at generators) as deterministic values. Each set of specified values corresponds to one system state, which depends on a set of system conditions. When those conditions are uncertain, numerous scenarios must be analyzed.

A classic load flow analysis consists of calculating voltage magnitude and phase angle at the buses, as well as the active and reactive line flows for the specified terminal (or bus conditions). Four variables are associated with each bus:

Based on these values, a bus may be classified into the above-mentioned three categories as -

P Q V δ
P-Q bus known known unknown unknown
P-V bus known unknown known unknown
Slack bus unknown unknown known known

Real and reactive powers (i.e. complex power) cannot be fixed. The net complex power flow into the network is not known in advance, and the system power losses are unknown until the study is complete. It is necessary to have one bus (i.e. the slack bus) at which complex power is unspecified so that it supplies the difference in the total system load plus losses and the sum of the complex powers specified at the remaining buses. The slack bus must also be a generator bus. The complex power allocated to this bus is computed as part of the solution. In order for the variations in real and reactive powers of the slack bus to be a small percentage of its generating capacity during the solution process, the bus connected to the largest generating station is normally selected as the slack bus.

Solutions

The solution requires mathematical formulation and numerical solution. Since load flow problems generate non-linear equations that computers cannot solve quickly, numerical methods are required. The following methods are commonly used algorithms:

  1. Gauss Iterative Method
  2. Fast Decoupled Load Flow Method
  3. Gauss-Seidel Method
  4. Newton-Raphson Method

See also

References

  1. L.P. Singh, "Advanced Power System Analysis & Dynamics" by New Age International, ISBN 81-224-1732-9.
  2. I.J. Nagrath & D.P Kothari, "Modern Power System Analysis" by Tata-McGraw Hill, ISBN 978-0-07-049489-3, ISBN 0-07-049489-4

External links

This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.