Isotopes of tantalum
Natural tantalum (Ta) consists of two stable isotopes: 181Ta (99.988%) and 180m
Ta
(0.012%).
The latter nuclide 180m
Ta
(m denotes a metastable state) has sufficient energy to decay in three ways: isomeric transition to the ground state of 180
Ta
, beta decay to 180
W
, and electron capture to 180
Hf
. However, no radioactivity from any decay mode of this nuclear isomer has ever been observed. Only a lower limit on its half-life of over 1015 years has been set, by observation. The very slow decay of 180m
Ta
is attributed to its high spin (9 units) and the low spin of lower-lying states. Gamma or beta decay would require many units of angular momentum to be removed in a single step, so that the process would be very slow.[1]
The very unusual nature of 180mTa is that the ground state of this isotope is less stable than the isomer. The same property is exhibited in americium-242m (242mAm). 180
Ta
has a half-life of only 8 hours. 180m
Ta
is the only naturally occurring nuclear isomer (excluding radiogenic and cosmogenic short-living nuclides). It is also the rarest primordial nuclide in the Universe observed for any element that has any stable isotopes.
As of October 3, 2016 the half life of 180mTa is calculated to be least 45x1015 (45 million billion) years.[2][3]
There are also 35 known artificial radioisotopes, the longest-lived of which are 179Ta with a half-life of 1.82 years, 182Ta with a half-life of 114.43 days, 183Ta with a half-life of 5.1 days, and 177Ta with a half-life of 56.56 hours. All other isotopes have half-lives under a day, most under an hour. There are also numerous isomers, the most stable of which (other than 180mTa) is 178m1Ta with a half-life of 2.36 hours.
Tantalum has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of 181Ta, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 182
Ta
with a half-life of 114.43 days and produce approximately 1.12 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several months. Such a weapon is not known to have ever been built, tested, or used.[4]
Tantalum has a relative atomic mass of 180.94788(2).
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[5][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
155 Ta |
73 | 82 | 154.97459(54)# | 13(4) µs [12(+4−3) µs] |
(11/2−) | ||||
156 Ta |
73 | 83 | 155.97230(43)# | 144(24) ms | β+ (95.8%) | 156Hf | (2−) | ||
p (4.2%) | 155Hf | ||||||||
156m Ta |
102(7) keV | 0.36(4) s | p | 155Hf | 9+ | ||||
157 Ta |
73 | 84 | 156.96819(22) | 10.1(4) ms | α (91%) | 153Lu | 1/2+ | ||
β+ (9%) | 157Hf | ||||||||
157m1 Ta |
22(5) keV | 4.3(1) ms | 11/2− | ||||||
157m2 Ta |
1593(9) keV | 1.7(1) ms | α | 153Lu | (25/2−) | ||||
158 Ta |
73 | 85 | 157.96670(22)# | 49(8) ms | α (96%) | 154Lu | (2−) | ||
β+ (4%) | 158Hf | ||||||||
158m Ta |
141(9) keV | 36.0(8) ms | α (93%) | 154Lu | (9+) | ||||
IT | 158Ta | ||||||||
β+ | 158Hf | ||||||||
159 Ta |
73 | 86 | 158.963018(22) | 1.04(9) s | β+ (66%) | 159Hf | (1/2+) | ||
α (34%) | 155Lu | ||||||||
159m Ta |
64(5) keV | 514(9) ms | α (56%) | 155Lu | (11/2−) | ||||
β+ (44%) | 159Hf | ||||||||
160 Ta |
73 | 87 | 159.96149(10) | 1.70(20) s | α | 156Lu | (2#)− | ||
β+ | 160Hf | ||||||||
160m Ta |
310(90)# keV | 1.55(4) s | β+ (66%) | 160Hf | (9)+ | ||||
α (34%) | 156Lu | ||||||||
161 Ta |
73 | 88 | 160.95842(6)# | 3# s | β+ (95%) | 161Hf | 1/2+# | ||
α (5%) | 157Lu | ||||||||
161m Ta |
50(50)# keV | 2.89(12) s | 11/2−# | ||||||
162 Ta |
73 | 89 | 161.95729(6) | 3.57(12) s | β+ (99.92%) | 162Hf | 3+# | ||
α (.073%) | 158Lu | ||||||||
163 Ta |
73 | 90 | 162.95433(4) | 10.6(18) s | β+ (99.8%) | 163Hf | 1/2+# | ||
α (.2%) | 159Lu | ||||||||
164 Ta |
73 | 91 | 163.95353(3) | 14.2(3) s | β+ | 164Hf | (3+) | ||
165 Ta |
73 | 92 | 164.950773(19) | 31.0(15) s | β+ | 165Hf | 5/2−# | ||
165m Ta |
60(30) keV | 9/2−# | |||||||
166 Ta |
73 | 93 | 165.95051(3) | 34.4(5) s | β+ | 166Hf | (2)+ | ||
167 Ta |
73 | 94 | 166.94809(3) | 1.33(7) min | β+ | 167Hf | (3/2+) | ||
168 Ta |
73 | 95 | 167.94805(3) | 2.0(1) min | β+ | 168Hf | (2−,3+) | ||
169 Ta |
73 | 96 | 168.94601(3) | 4.9(4) min | β+ | 169Hf | (5/2+) | ||
170 Ta |
73 | 97 | 169.94618(3) | 6.76(6) min | β+ | 170Hf | (3)(+#) | ||
171 Ta |
73 | 98 | 170.94448(3) | 23.3(3) min | β+ | 171Hf | (5/2−) | ||
172 Ta |
73 | 99 | 171.94490(3) | 36.8(3) min | β+ | 172Hf | (3+) | ||
173 Ta |
73 | 100 | 172.94375(3) | 3.14(13) h | β+ | 173Hf | 5/2− | ||
174 Ta |
73 | 101 | 173.94445(3) | 1.14(8) h | β+ | 174Hf | 3+ | ||
175 Ta |
73 | 102 | 174.94374(3) | 10.5(2) h | β+ | 175Hf | 7/2+ | ||
176 Ta |
73 | 103 | 175.94486(3) | 8.09(5) h | β+ | 176Hf | (1)− | ||
176m1 Ta |
103.0(10) keV | 1.1(1) ms | IT | 176Ta | (+) | ||||
176m2 Ta |
1372.6(11)+X keV | 3.8(4) µs | (14−) | ||||||
176m3 Ta |
2820(50) keV | 0.97(7) ms | (20−) | ||||||
177 Ta |
73 | 104 | 176.944472(4) | 56.56(6) h | β+ | 177Hf | 7/2+ | ||
177m1 Ta |
73.36(15) keV | 410(7) ns | 9/2− | ||||||
177m2 Ta |
186.15(6) keV | 3.62(10) µs | 5/2− | ||||||
177m3 Ta |
1355.01(19) keV | 5.31(25) µs | 21/2− | ||||||
177m4 Ta |
4656.3(5) keV | 133(4) µs | 49/2− | ||||||
178 Ta |
73 | 105 | 177.945778(16) | 9.31(3) min | β+ | 178Hf | 1+ | ||
178m1 Ta |
100(50)# keV | 2.36(8) h | β+ | 178Hf | (7)− | ||||
178m2 Ta |
1570(50)# keV | 59(3) ms | (15−) | ||||||
178m3 Ta |
3000(50)# keV | 290(12) ms | (21−) | ||||||
179 Ta |
73 | 106 | 178.9459295(23) | 1.82(3) a | EC | 179Hf | 7/2+ | ||
179m1 Ta |
30.7(1) keV | 1.42(8) µs | (9/2)− | ||||||
179m2 Ta |
520.23(18) keV | 335(45) ns | (1/2)+ | ||||||
179m3 Ta |
1252.61(23) keV | 322(16) ns | (21/2−) | ||||||
179m4 Ta |
1317.3(4) keV | 9.0(2) ms | IT | 179Ta | (25/2+) | ||||
179m5 Ta |
1327.9(4) keV | 1.6(4) µs | (23/2−) | ||||||
179m6 Ta |
2639.3(5) keV | 54.1(17) ms | (37/2+) | ||||||
180 Ta |
73 | 107 | 179.9474648(24) | 8.152(6) h | EC (86%) | 180Hf | 1+ | ||
β− (14%) | 180W | ||||||||
180m1 Ta |
77.1(8) keV | Observationally stable[n 3] | 9− | 1.2(2)×10−4 | |||||
180m2 Ta |
1452.40(18) keV | 31.2(14) µs | 15− | ||||||
180m3 Ta |
3679.0(11) keV | 2.0(5) µs | (22−) | ||||||
180m4 Ta |
4171.0+X keV | 17(5) µs | (23,24,25) | ||||||
181 Ta |
73 | 108 | 180.9479958(20) | Observationally stable[n 4] | 7/2+ | 0.99988(2) | |||
181m1 Ta |
6.238(20) keV | 6.05(12) µs | 9/2− | ||||||
181m2 Ta |
615.21(3) keV | 18(1) µs | 1/2+ | ||||||
181m3 Ta |
1485(3) keV | 25(2) µs | 21/2− | ||||||
181m4 Ta |
2230(3) keV | 210(20) µs | 29/2− | ||||||
182 Ta |
73 | 109 | 181.9501518(19) | 114.43(3) d | β− | 182W | 3− | ||
182m1 Ta |
16.263(3) keV | 283(3) ms | IT | 182Ta | 5+ | ||||
182m2 Ta |
519.572(18) keV | 15.84(10) min | 10− | ||||||
183 Ta |
73 | 110 | 182.9513726(19) | 5.1(1) d | β− | 183W | 7/2+ | ||
183m Ta |
73.174(12) keV | 107(11) ns | 9/2− | ||||||
184 Ta |
73 | 111 | 183.954008(28) | 8.7(1) h | β− | 184W | (5−) | ||
185 Ta |
73 | 112 | 184.955559(15) | 49.4(15) min | β− | 185W | (7/2+)# | ||
185m Ta |
1308(29) keV | >1 ms | (21/2−) | ||||||
186 Ta |
73 | 113 | 185.95855(6) | 10.5(3) min | β− | 186W | (2−,3−) | ||
186m Ta |
1.54(5) min | ||||||||
187 Ta |
73 | 114 | 186.96053(21)# | 2# min [>300 ns] |
β− | 187W | 7/2+# | ||
188 Ta |
73 | 115 | 187.96370(21)# | 20# s [>300 ns] |
β− | 188W | |||
189 Ta |
73 | 116 | 188.96583(32)# | 3# s [>300 ns] |
7/2+# | ||||
190 Ta |
73 | 117 | 189.96923(43)# | 0.3# s |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
- ↑ Only known observationally stable nuclear isomer, believed to decay by isomeric transition to 180Ta, β− decay to 180W, or electron capture to 180Hf with a half-life over 2.0×1016 years
- ↑ Believed to undergo α decay to 177Lu
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
References
- ↑ Quantum mechanics for engineers Leon van Dommelen, Florida State University
- ↑ Conover, Emily (2016-10-03). "Rarest nucleus reluctant to decay". Retrieved 2016-10-05.
- ↑ Lehnert, Björn; Hult, Mikael; Lutter, Guillaume; Zuber, Kai (2016-09-13). "Search for the decay of nature's rarest isotope $^{\rm {180m}}$Ta". arXiv:1609.03725 [nucl-ex].
- ↑ D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
- ↑ "Universal Nuclide Chart". nucleonica. (registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005. Check date values in:
|access-date=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of hafnium | Isotopes of tantalum | Isotopes of tungsten |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He | ||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn | |
87 Fr |
88 Ra |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og | |
57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | |||
89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr | |||
|