Timeline of modern scientific computing

The following timeline starts with the invention of the modern computer in the late interwar period. For a fuller picture of the development of scientific computing (also known as computational science), see timeline of scientific computing article.

1930s

1940s

1950s

1960s

1970s

1980s

1990s

2000s

Miscellaneous

Key organisations

By (research/non-review) publications:

By (unique) authors/innovators:

See also

References

  1. Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
  2. S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  3. Metropolis, N.; Ulam, S. (1949). "The Monte Carlo method". Journal of the American Statistical Association. 44: 335–341. doi:10.1080/01621459.1949.10483310.
  4. Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  5. Von Neumann, J.; Richtmyer, R. D. (1950). "A Method for the Numerical Calculation of Hydrodynamic Shocks". Journal of Applied Physics. 21: 232–237. doi:10.1063/1.1699639.
  6. "SIAM News, November 1994". Retrieved 6 June 2012. Hosted at Systems Optimization Laboratory, Stanford University, Huang Engineering Center.
  7. Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  8. A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN 0-534-99845-3.) .
  9. Charney, J.; Fjørtoft, R.; von Neumann, J. (1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus. 2 (4).
  10. See the review article:- Smagorinsky, J (1983). "The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections" (PDF). Advances in Geophysics. 25. Retrieved 6 June 2012.
  11. Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).
  12. Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).
  13. Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).
  14. Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).
  15. W.W. McDowell Award citation: "W. Wallace McDowell Award". Retrieved April 15, 2008.
  16. National Medal of Science citation: "The President's National Medal of Science: John Backus". National Science Foundation. Retrieved March 21, 2007.
  17. "ACM Turing Award Citation: John Backus". Association for Computing Machinery. Archived from the original on February 4, 2007. Retrieved March 22, 2007.
  18. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines" (PDF). Journal of Chemical Physics. 21 (6): 1087–1092. doi:10.1063/1.1699114.
  19. Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
  20. Alder, B. J.; Wainwright, T. E. (1957). "Phase Transition for a Hard Sphere System". J. Chem. Phys. 27 (5): 1208. doi:10.1063/1.1743957.
  21. Alder, B. J.; Wainwright, T. E. (1962). "Phase Transition in Elastic Disks". Phys. Rev. 127 (2): 359–361. doi:10.1103/PhysRev.127.359.
  22. Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM. 5 (4): 339342. doi:10.1145/320941.320947. MR 0111128.
  23. J.G.F. Francis, 1961 "The QR Transformation, I", The Computer Journal, vol. 4, no. 3, pages 265-271 online at oxfordjournals.org
  24. J.G.F. Francis, 1962 "The QR Transformation, II" The Computer Journal, vol. 4, no. 4, pages 332-345 online
  25. Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  26. RW Clough, “The Finite Element Method in Plane Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  27. Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  28. Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
  29. Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
  30. Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  31. Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965).
  32. Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  33. Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.136.B864.
  34. "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
  35. B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  36. Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9.
  37. Appel, Kenneth; Haken, Wolfgang. "Every planar map is four colorable, Part I: Discharging". Illinois Journal of Mathematics. 21 (429–490): 1977.
  38. Appel, K. and Haken, W. "Every Planar Map is Four-Colorable, II: Reducibility." Illinois J. Math. 21, 491-567, 1977.
  39. Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.
  40. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  41. Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory". J. Computational Physics. 60: 187–207. doi:10.1016/0021-9991(85)90002-6.
  42. Greengard, L.; Rokhlin, V. (1987). "A fast algorithm for particle simulations". J. Comput. Phys. 73 (2): 325–348. doi:10.1016/0021-9991(87)90140-9.
  43. NCSA Mosaic. National Center for Supercomputing Applications homepage. Retrieved 11 Nov 2012.

External links

This article is issued from Wikipedia - version of the 8/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.