Basic helix-loop-helix

basic helix-loop-helix DNA-binding domain

Basic helix-loop-helix structural motif of ARNT. Two α-helices (blue) are connected by a short loop (red).[1]
Identifiers
Symbol bHLH
Pfam PF00010
InterPro IPR001092
SMART SM00353
PROSITE PDOC00038
SCOP 1mdy
SUPERFAMILY 1mdy
CDD cd00083

A basic helix-loop-helix (bHLH) is a protein structural motif that characterizes a family of transcription factors.[2][3][4] It should not be confused with the helix-turn-helix domain.

Structure

The motif is characterized by two α-helices connected by a loop. In general, transcription factors including this domain are dimeric, each with one helix containing basic amino acid residues that facilitate DNA binding.[5] In general, one helix is smaller, and, due to the flexibility of the loop, allows dimerization by folding and packing against another helix. The larger helix typically contains the DNA-binding regions. bHLH proteins typically bind to a consensus sequence called an E-box, CANNTG.[6] The canonical E-box is CACGTG (palindromic), however some bHLH transcription factors, notably those of the bHLH-PAS family, bind to related non-palindromic sequences, which are similar to the E-box.

Examples

Examples of transcription factors containing a bHLH include:

bHLH transcription factors are often important in development or cell activity. BMAL1-Clock is a core transcription complex in the molecular circadian clock. Other genes, like c-Myc and HIF-1, have been linked to cancer due to their effects on cell growth and metabolism.

Regulation

Since many bHLH transcription factors are heterodimeric, their activity is often highly regulated by the dimerization of the subunits. One subunit's expression or availability is often controlled, whereas the other subunit is constitutively expressed. Many of the known regulatory proteins, such as the Drosophila extramacrochaetae protein, have the helix-loop-helix structure but lack the basic region, making them unable to bind to DNA on their own. They are, however, able to form heterodimers with proteins that have the bHLH structure, and inactivate their abilities as transcription factors.[7]

History

Human proteins with helix-loop-helix DNA-binding domain

AHR; AHRR; ARNT; ARNT2; ARNTL; ARNTL2; ASCL1; ASCL2; ASCL3; ASCL4; ATOH1; ATOH7; ATOH8; BHLHB2; BHLHB3; BHLHB4; BHLHB5; BHLHB8; CLOCK; EPAS1; FERD3L; FIGLA; HAND1; HAND2; HES1; HES2; HES3; HES4; HES5; HES6; HES7; HEY1; HEY2; HIF1A; ID1; ID2; ID3; ID4; KIAA2018; LYL1; MASH1; MATH2; MAX; MESP1; MESP2; MIST1; MITF; MLX; MLXIP; MLXIPL; MNT; MSC; MSGN1; MXD1; MXD3; MXD4; MXI1; MYC; MYCL1; MYCL2; MYCN; MYF5; MYF6; MYOD1; MYOG; NCOA1; NCOA3; NEUROD1; NEUROD2; NEUROD4; NEUROD6; NEUROG1; NEUROG2; NEUROG3; NHLH1; NHLH2; NPAS1; NPAS2; NPAS3; OAF1; OLIG1; OLIG2; OLIG3; PTF1A; SCL; SCXB; SIM1; SIM2; SOHLH1; SOHLH2; SREBF1; SREBF2; TAL1; TAL2; TCF12; TCF15; TCF21; TCF3; TCF4; TCFL5; TFAP4; TFE3; TFEB; TFEC; TWIST1; TWIST2; USF1; USF2;

References

  1. PDB: 1x0o; Card PB, Erbel PJ, Gardner KH (October 2005). "Structural basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization". J. Mol. Biol. 353 (3): 664–77. doi:10.1016/j.jmb.2005.08.043. PMID 16181639.
  2. Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (June 1994). "Structure and function of helix-loop-helix proteins". Biochim. Biophys. Acta. 1218 (2): 129–35. doi:10.1016/0167-4781(94)90001-9. PMID 8018712.
  3. Littlewood TD, Evan GI (1995). "Transcription factors 2: helix-loop-helix". Protein Profile. 2 (6): 621–702. PMID 7553065.
  4. Massari ME, Murre C (January 2000). "Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms". Mol. Cell. Biol. 20 (2): 429–40. doi:10.1128/MCB.20.2.429-440.2000. PMC 85097Freely accessible. PMID 10611221.
  5. Lawrence Zipursky; Arnold Berk; Monty Krieger; Darnell, James E.; Lodish, Harvey F.; Kaiser, Chris; Matthew P Scott; Matsudaira, Paul T. McGill Lodish 5E Package - Molecular Cell Biology & McGill Activation Code. San Francisco: W. H. Freeman. ISBN 0-7167-8635-4.
  6. 1 2 Chaudhary J, Skinner MK (1999). "Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells". Mol. Endocrinol. 13 (5): 774–86. doi:10.1210/mend.13.5.0271. PMID 10319327.
  7. Cabrera CV, Alonso MC, Huikeshoven H (1994). "Regulation of scute function by extramacrochaete in vitro and in vivo". Development. 120 (12): 3595–603. PMID 7821225.
  8. Murre C, McCaw PS, Vaessin H, et al. (1989). "Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence". Cell. 58 (3): 537–44. doi:10.1016/0092-8674(89)90434-0. PMID 2503252.
  9. Ellenberger T, Fass D, Arnaud M, Harrison SC (April 1994). "Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer". Genes Dev. 8 (8): 970–80. doi:10.1101/gad.8.8.970. PMID 7926781.
  10. Ma PC, Rould MA, Weintraub H, Pabo CO (May 1994). "Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation". Cell. 77 (3): 451–9. doi:10.1016/0092-8674(94)90159-7. PMID 8181063.
  11. Wharton KA, Franks RG, Kasai Y, Crews ST (December 1994). "Control of CNS midline transcription by asymmetric E-box-like elements: similarity to xenobiotic responsive regulation". Development. 120 (12): 3563–9. PMID 7821222.
  12. Wang GL, Jiang BH, Rue EA, Semenza GL (June 1995). "Hypoxia-inducible factor 1 is a basic helix-loop-helix-PAS heterodimer regulated by cellular O2 tension". Proc. Natl. Acad. Sci. U.S.A. 92 (12): 5510–4. doi:10.1073/pnas.92.12.5510. PMC 41725Freely accessible. PMID 7539918.
  13. Grove C, De Masi F, et al. (2009). "A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors". Cell. 138 (2): 314–27. doi:10.1016/j.cell.2009.04.058. PMC 2774807Freely accessible. PMID 19632181.

External links

This article is issued from Wikipedia - version of the 6/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.